

Université de Toulouse ONERA - The French Aerospace Lab erwan.lecarpentier@isae-supaero.fr

Abstract

We study MDPs evolving over time (Definition 1) and consider planning in this setting. We make two hypotheses:

- 1. Continuous, bounded, evolution (Definition 2);
- 2. Snapshot model (Definition 3) known at each decision epoch. Our contribution can be presented in three points:
- 1. Proposal of a planning method robust to the environment's evolution;
- 2. Introduction of a zero-shot model-based algorithm, Risk-Averse Tree-Search (RATS), computing the best worst-case action;
- 3. Illustration of the benefits of the approach in experiments.

Non-Stationary Markov Decision Processes

Definition (1)

An **NSMDP** is an MDP whose transition and reward functions depend on the decision epoch. It is defined by a 5-tuple $\{S, \mathcal{T}, \mathcal{A}, (p_t)_{t \in \mathcal{T}}, (r_t)_{t \in \mathcal{T}}\}$ where S is a state space; $T \equiv \{1, 2, ..., N\}$ is the set of decision epochs, $N \leq +\infty$; \mathcal{A} is an action space; $p_t(s' \mid s, a)$ is the probability of reaching state s' with action a at decision epoch t in state s; $r_t(s, a, s')$ is the reward associated to the transition from s to s' with action a at decision epoch *t*.

Definition (2)

An (L_p, L_r) -LC-NSMDP is an NSMDP whose transition and reward functions are respectively L_p -LC and L_r -LC w.r.t. time, i.e.,

 $orall (t,\hat{t},s,s',a)\in \mathcal{T}^2 imes \mathcal{S}^2 imes \mathcal{A}, egin{cases} W_1(p_t(\cdot\mid s,a),p_{\hat{t}}(\cdot\mid s,a)) &\leq L_p|t-\hat{t}|\ |r_t(s,a,s')-r_{\hat{t}}(s,a,s')| &\leq L_r|t-\hat{t}|. \end{cases}$

Risk-Averse Tree-Search algorithm

Definition (3)

The snapshot of an NSMDP $\{S, T, A, (p_t)_{t \in T}, (r_t)_{t \in T}\}$ at decision epoch t_0 , denoted by MDP_{t₀}, is the stationary MDP defined by the 4-tuple $\{S, A, p_{t_0}, r_{t_0}\}$ where $p_{t_0}(s' \mid s, a)$ and $r_{t_0}(s, a, s')$ are the transition and reward functions of the NSMDP at t_0 .

Non-Stationary Markov Decision Processes a Worst-Case Approach using Model-Based Reinforcement Learning

Erwan Lecarpentier

Proposition (1)

Set of admissible snapshot models. Consider an (L_p, L_r) -LC-NSMDP, $s, t, a \in S \times T \times A$. The transition and expected reward functions (p_t, R_t) of the snapshot MDP_t respect $(p_t, R_t) \in \Delta_t \coloneqq \mathcal{B}_{W_1}(p_{t-1}(\cdot \mid s, a), L_p) \times \mathcal{B}_{\mid \cdot \mid}(R_{t-1}(s, a), L_p + L_r)$ where $\mathcal{B}_d(c, r)$ is the ball of centre c, defined with metric d and radius r.

Figure: Tree structure: alternation between **decision nodes** labelled by a unique state and **chance nodes** labelled by a state-action pair. Maximum depth $d_{max} = 2$, action space $\mathcal{A} = \{a_1, a_2\}$. The tree is entirely developed until d_{max} which makes the per-time-step complexity of the RATS algorithm $\mathcal{O}(|\mathcal{S}|^{3.5}|\mathcal{A}|^2)^{d_{\max}}$.

Algorithm 1: RATS algorithm

RATS (s_0 , t_0 , maxDepth) $\nu_0 = \operatorname{rootNode}(s_0, t_0)$ $Minimax(\nu_0)$ $\nu^* = \arg \max_{\nu' \text{ in } \nu. \text{children }} \nu'. \text{value}$ **return** ν^* .action

Minimax (ν , maxDepth) if ν is DecisionNode then if ν state is terminal or ν depth = maxDepth then **return** ν .value = heuristicValue(ν .state) else **return** ν .value = max_{$\nu' \in \nu$.children}Minimax(ν' , maxDepth) else return ν .value = min_{(p,R) \in \Delta_{t_0}^t} R(\nu) + \gamma \sum_{\nu' \in \nu.children} p(\nu' \mid P(\nu))} ν)Minimax(ν' , maxDepth)

Emmanuel Rachelson

Université de Toulouse **ISAE-SUPAERO** emmanuel.rachelson@isae-supaero.fr

Experiments

Figure: Discounted return vs ϵ , 50% of standard deviation.

Figure: Discounted return distributions $\epsilon \in \{0, 0.5, 1\}$.