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Abstract

We study MDPs evolving over time (Definition 1) and consider planning in
this setting. We make two hypotheses:

1. Continuous, bounded, evolution (Definition 2);

2. Snapshot model (Definition 3) known at each decision epoch.

Our contribution can be presented in three points:

1. Proposal of a planning method robust to the environment’s evolution;

2. Introduction of a zero-shot model-based algorithm, Risk-Averse
Tree-Search (RATS), computing the best worst-case action;

3. Illustration of the benefits of the approach in experiments.

Non-Stationary Markov Decision Processes

Definition (1)

An NSMDP is an MDP whose transition and reward functions depend on
the decision epoch. It is defined by a 5-tuple {S, T ,A, (pt)t∈T , (rt)t∈T }
where S is a state space; T ≡ {1, 2, . . . ,N} is the set of decision epochs,
N ≤ +∞; A is an action space; pt(s

′ | s, a) is the probability of reaching
state s ′ with action a at decision epoch t in state s; rt(s, a, s

′) is the
reward associated to the transition from s to s ′ with action a at decision
epoch t.

Definition (2)

An (Lp, Lr)-LC-NSMDP is an NSMDP whose transition and reward
functions are respectively Lp-LC and Lr-LC w.r.t. time, i.e.,

∀(t, t̂, s, s ′, a) ∈ T 2 × S2 ×A,
{
W1(pt(· | s, a), pt̂(· | s, a)) ≤ Lp|t − t̂|
|rt(s, a, s ′)− rt̂(s, a, s

′)| ≤ Lr |t − t̂|.

Risk-Averse Tree-Search algorithm

Definition (3)

The snapshot of an NSMDP {S, T ,A, (pt)t∈T , (rt)t∈T } at decision
epoch t0, denoted by MDPt0

, is the stationary MDP defined by the 4-tuple
{S,A, pt0

, rt0
} where pt0

(s ′ | s, a) and rt0
(s, a, s ′) are the transition and

reward functions of the NSMDP at t0.

Proposition (1)
Set of admissible snapshot models. Consider an
(Lp, Lr)-LC-NSMDP, s, t, a ∈ S × T ×A. The transition and expected
reward functions (pt,Rt) of the snapshot MDPt respect

(pt,Rt) ∈ ∆t := BW1
(pt−1(· | s, a), Lp)× B|·| (Rt−1(s, a), Lp + Lr)

where Bd (c, r) is the ball of centre c , defined with metric d and radius r .
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Figure: Tree structure: alternation between decision nodes labelled by a unique state
and chance nodes labelled by a state-action pair. Maximum depth dmax = 2, action
space A = {a1, a2}. The tree is entirely developed until dmax which makes the
per-time-step complexity of the RATS algorithm O(|S|3.5|A|2)dmax.

Algorithm 1: RATS algorithm
RATS (s0, t0, maxDepth)
ν0 = rootNode(s0, t0)
Minimax(ν0)
ν∗ = arg maxν ′ in ν.children ν

′.value
return ν∗.action

Minimax (ν, maxDepth)
if ν is DecisionNode then
if ν.state is terminal or ν.depth = maxDepth then
return ν.value = heuristicValue(ν.state)

else
return ν.value = maxν ′∈ν.childrenMinimax(ν ′, maxDepth)

else
return ν.value = min(p,R)∈∆t

t0
R(ν) + γ

∑
ν ′∈ν.children p(ν ′ |

ν)Minimax(ν ′,maxDepth)
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Figure: Non-Stationary bridge MDP.

The value of ε ∈ [0, 1] defines
different possible evolutions:

I ε = 0 left cells are slippery;
I ε = 1 right cells are slippery;
I ε ∈ (0, 1) linear balance between

extreme cases.
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Figure: Discounted return vs ε, 50% of standard deviation.
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Figure: Discounted return distributions ε ∈ {0, 0.5, 1}.


