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Problem statement: Lifelong RL

Problematic: in Lifelong RL, how to perform safe, distance-based, online knowledge
transfer to accelerate learning of subsequent tasks?
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Figure: In Lifelong RL, an agent interacts sequentially with a series of MDPs.

Takeaway message

We consider the problem of knowledge transfer in Lifelong Reinforcement Learning (RL),
i.e., when an agent is facing a series of RL tasks, modeled by Markov Decision Processes
(MDPs). Our contributions are as follows:

1. We introduce a novel metric pseudo-metric between MDPs;

2. We establish that the optimal value function Q∗M is Lipschitz Continuous with respect
to the MDP space endowed with this pseudo-metric;

3. From this theoretical result, we build a value-transfer method for Lifelong RL;

4. We adapt this method in an algorithm called Lipschitz RMax: the first online,
PAC-MDP, distance-based, non-negative transfer method for Lifelong RL.

1 A pseudo-metric between MDP models

Definition (Pseudo-metric between models)

Given two MDPs M = (S,A,R ,T ) and M̄ =
(
S,A, R̄ , T̄

)
, we define the pseudo-metric

between models at (s, a) ∈ S ×A as:

Dsa(M‖M̄) , |Ra
s − R̄a

s | + γ
∑
s ′∈S

V ∗M̄(s ′)|T a
ss ′ − T̄ a

ss ′|.

2 Lipschitz continuity result

Proposition (Local pseudo-Lipschitz continuity)
For two MDPs M , M̄, for all (s, a) ∈ S ×A,∣∣Q∗M(s, a)− Q∗M̄(s, a)

∣∣ ≤ ∆sa(M , M̄),

with the local MDP pseudometric defined as

∆sa(M , M̄) , min
{
dsa(M‖M̄), dsa(M̄‖M)

}
, (1 )

and the local MDP dissimilarity dsa(M‖M̄) defined as
the unique solution to the following fixed-point equation
for dsa:

dsa = Dsa(M‖M̄) + γ
∑
s ′∈S

T a
ss ′ max

a′∈A
ds ′a′,∀s, a.
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3 Transfer method

Idea 1:
Close MDPs in the sense of Equation 1 have close Q∗.

Precisely, if we can measure the local pseudo-distance between two MDPs M , M̄ ∈M, we
can deduce some information about their Q-values in the form of an upper-bound:

Q∗M(s, a) ≤ Q∗M̄(s, a) + ∆sa(M , M̄).

We call this upper-bound the Lipschitz bound on Q∗M induced by Q∗
M̄

and write it

UM̄(s, a) , Q∗M̄(s, a) + ∆sa(M , M̄).

Idea 2:
Knowing a tight upper-bound on Q∗ allows for fast learning.

From ideas 1 and 2, we build a transfer scheme for Lifelong RL:

1. Sample a new MDP M ∈M
2. Measure the distance between M and each source MDP and select M̄ , the closest

MDP

3. Use UM̄(s, a) = Q∗
M̄

(s, a) + ∆sa(M , M̄) as an upper-bound on Q∗M to accelerate
learning
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Figure: Upper-bounds on Q∗M of the RMax, MaxQInit and Lipschitz RMax algorithms. Tighter upper-bounds
potentially improve the sample efficiency of the algorithms.

Distance-based transfer scheme
This transfer method is distance-based, which we believe to be an important feature of
an efficient transfer scheme. Intuitively, the amount of transferable knowledge should be
proportional to a notion of similarity between tasks:

“Close tasks should allow for a large amount of transferable knowledge,

and vice versa”

Questions:

1. How to compute the local pseudo-distance between two MDPs ∆sa(M , M̄) online?

2. What happens if both the source M and the target MDP M̄ are partially known?

Answer: We propose to make an approximation to be able to compute the induced
Lipschitz bound UM̄(s, a) online. This results in the Lipschitz RMax algorithm.

4 Lipschitz RMax algorithm

Lipschitz RMax practically implements the transfer method of Section 3 in the online
Lifelong RL setting. The algorithm relies on two things:

1. An approximation of the induced Lipschitz upper-bound UM̄(s, a);

2. The ability to use the maximum possible distance between models Dmax in the form of
prior knowledge.
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Figure: Illustration of the prior knowledge on the maximum pseudo-distance between models for a particular
s, a pair. The maximum pseudo-distance between any MDPs reward and transition functions is 1+γ

1−γ . In
contrast, this distance, denoted by Dmax, is generally smaller in a particular Lifelong RL experiment.
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Figure: Illustration of the bounds, including the one practically used by Lipschitz RMax, represented in red.
The knowledge of Dmax in the form of prior knowledge allows Lipschitz RMax to reduce the space of possible
MDPs in its approximation error.

Features of Lipschitz RMax:
I Online: the method can be applied online, without full knowledge of the target and

source MDPs.

I PAC-MDP (Strehl, Li, and Littman 2009): with probability higher than 1− δ,
Lipschitz RMax converges to an ε-optimal policy, with a polynomial sample,
computational and space complexity in (S ,A, 1/ε, 1/δ, 1/(1− γ)).

I Distance-based: the closer the MDPs, the higher the amount of transferred
knowledge

I Non-negative transfer: with probability higher than 1− δ, the computed induced
Lipschitz bound is an upper-bound on Q∗M, which prevents the reduction of
performance by under-exploration.

5 Lifelong RL experiments
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Figure: Performance of RMax, Lipschitz RMax, MaxQInit and a combination of Lipschitz RMax and
MaxQInit in a Lifelong RL experiment featuring grid-world MDPs. The score is represented as a function of
the task number.

Perspectives

1. Same approach with function approximation?

2. Other metrics than Equation 1: less conservative? Problem-dependent?

3. Reduce the linearly growing number of source tasks? Clustering?
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