LUCIE: An Evaluation and Selection Method for Stochastic Problems - Appendix

ERWAN LECARPENTIER*, University of Toulouse, IRIT (UMR 5505), REVA team, IRT Saint Éxupery, France PAUL TEMPLIER*, University of Toulouse, ISAE-SUPAERO, France
EMMANUEL RACHELSON, University of Toulouse, ISAE-SUPAERO, France
DENNIS G. WILSON, University of Toulouse, ISAE-SUPAERO, France

ACM Reference Format:

Erwan Lecarpentier, Paul Templier, Emmanuel Rachelson, and Dennis G. Wilson. 2022. LUCIE: An Evaluation and Selection Method for Stochastic Problems - Appendix. In Genetic and Evolutionary Computation Conference (GECCO '22), Fuly 9-13, 2022, Boston, MA, USA. ACM, New York, NY, USA, 19 pages. https://doi.org/10.1145/3512290.3528838

1 NOTATIONS

We recall here the definition of the different sets we used in the paper and introduce some more for the purpose of the proofs.
Consider generation g, while applying LUCIE with parameters $\mu, \lambda, \epsilon, \delta$. All the sets described below are illustrated in Figure A. 1 and correspond to the same notations as [2]. We write Top ${ }^{g}$ the set of the μ individuals with highest expected fitness, and, Bot^{g} the λ remaining individuals: For $\epsilon \in[0,1]$, we define Good ${ }^{g}$, the set of (ϵ, μ)-optimal individual, and BAD^{g}, as

$$
\begin{gathered}
\mathrm{GoOD}^{g} \stackrel{\text { def }}{=}\left\{i \in \mathrm{IND}^{g}, f_{i} \geq \min _{j \in \mathrm{Top}^{g}} f_{j}-\epsilon\right\} \\
\mathrm{BAD}^{g} \stackrel{\text { def }}{=} \mathrm{IND}^{g} \backslash \mathrm{GoOD}^{g}
\end{gathered}
$$

The objective of elitism is to be able to return μ individuals in Good g. Obviously, the algorithm is unaware of what individuals are in GooD^{g} or BAD^{g}. Instead, it maintains the sets $\mathrm{HIGH}^{g, t}$ and Low ${ }^{g, t}$, respectively containing the believed best μ individual and the remainder. This ordering is performed based on the empirical fitness. Further, we define c as the mean between the fitness of the "worst" individual in Top ${ }^{g}$ and the fitness of the "best" individual in Bot^{g} :

$$
\begin{equation*}
c \stackrel{\text { def }}{=} \frac{1}{2}\left(\min _{i \in \mathrm{Top}^{g}} f_{i}+\max _{i \in \mathrm{Bot}^{g}} f_{i}\right) . \tag{A.1}
\end{equation*}
$$

*Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
GECCO '22, July 9-13, 2022, Boston, MA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9237-2/22/07...\$15.00
https://doi.org/10.1145/3512290.3528838

Fig. A.1. Illustration of the different sets for $\mu=2, \lambda=4$. The circle markers represent true fitness of individuals while the triangles, diamonds, stars and ellipses represent empirical fitness means. Additionally, those empirical means are surrounded by confidence intervals.

Based on c, we can define the sets Above $^{g, t}$, Below $^{g, t}$, and, Middle ${ }^{g, t}$ as follows:

$$
\begin{align*}
& \mathrm{ABOVE}^{g, t} \stackrel{\text { def }}{=}\left\{i \in \mathrm{IND}^{g}, \hat{f}_{i}^{g, t}-\beta\left(u_{i}^{g, t}, t\right) \geq c\right\}, \tag{A.2}\\
& \mathrm{BELOW}^{g, t} \stackrel{\text { def }}{=}\left\{i \in \mathrm{IND}^{g}, \hat{f}_{i}^{g, t}+\beta\left(u_{i}^{g, t}, t\right) \leq c\right\}, \\
& \mathrm{MiddLE}^{g, t} \stackrel{\text { def }}{=} \mathrm{IND}^{g} \backslash\left(\mathrm{ABOVE}^{g, t} \cup \mathrm{BELOW}^{g, t}\right)
\end{align*}
$$

As c separates the fitness of individuals in Top^{g} from the fitness of individuals in BoT^{g}, we wish that individuals in $\mathrm{AbOVE}^{g, t}$ (respectively in $\mathrm{Below}^{g, t}$) and Top^{g} (respectively in $\mathrm{Bot}^{g} t$) are the same. We call Cross ${ }_{i}^{g, t}$ the event that this is not the case for individual $i \in \mathrm{Ind}^{g}$, and Cross ${ }^{g, t}$ the event that Cross $_{i}^{g, t}$ is true for at least one individual. Formally,

$$
\begin{aligned}
& \mathrm{Cross}_{i}^{g, t} \stackrel{\text { def }}{=} \begin{cases}i \in \mathrm{BELOW}^{g, t} & \text { if } i \in \mathrm{ToP}^{g}, \\
i \in \mathrm{AbOVE}^{g, t} & \text { if } i \in \mathrm{BoT}^{g} .\end{cases} \\
& \mathrm{Cross}^{g, t} \stackrel{\text { def }}{=} \exists i \in \mathrm{IND}^{g}, \mathrm{CrOSS}_{i}^{g, t} .
\end{aligned}
$$

Additionally, we define the event that an individual is "needy", meaning that it belongs to the MiddLE ${ }^{g, t}$ set, and that its confidence bound is larger than $\epsilon / 2$:

$$
\operatorname{NEEDY}_{i}^{g, t} \stackrel{\text { def }}{=}\left(i \in \operatorname{MidDLE}^{g, t}\right) \wedge\left(\beta\left(u_{i}^{g, t}, t\right)>\frac{\epsilon}{2}\right)
$$

Finally, we define the event of termination at step t as true when the termination criterion of Equation 2 has been met during step t or before:

$$
\mathrm{TERM}^{g, t} \stackrel{\text { def }}{=} \exists t^{\prime} \leq t, \hat{f}_{l^{t^{\prime}}}^{g, t^{\prime}}+\beta\left(u_{l^{t^{\prime}}}^{g, t^{\prime}}, t^{\prime}\right)<\hat{f}_{h^{t^{\prime}}}^{g, t^{\prime}}-\beta\left(u_{h^{t^{\prime}}}^{g, t^{\prime}}\right)+\epsilon,
$$

where the sampling candidates h^{t} and l^{t} are defined according to Equation 1.

2 PROOF OF THEOREM 4.1

Claim: Let g be the current generation and $\beta: \mathbb{N}^{2} \rightarrow \mathbb{R}^{+}$a function such that

$$
\sum_{i=1}^{n} \sum_{t=1}^{\infty} \sum_{u=1}^{\infty} \exp \left(-2 u \beta(u, t)^{2}\right) \leq \delta
$$

if LUCIE terminates (Equation 2), the probability of returning a non- (ϵ, μ)-optimal individual is at most δ, with $0<\delta \leq 0.5$.

Proof. The proof of this result differs from the one of Theorem 1 of [2] in that the number of samples of the fitness of an individual can be larger than the number of steps of the current generations. Indeed, as samples are kept between generations, this number can get arbitrarily large. Let us write F^{g} the event of failing, i.e., reaching the termination criterion of Equation 2 and returning a non- (ϵ, μ)-optimal individual, during generation $g . F_{t}^{g}$ the event of failing during generation g at step t. We are interested in bounding $\mathbb{P}\left(F^{g}\right)$. Applying the union bound, we have that

$$
\begin{equation*}
\mathbb{P}\left(F^{g}\right)=\mathbb{P}\left(\bigcup_{t=1}^{\infty} F_{t}^{g}\right) \leq \sum_{t=1}^{\infty} \mathbb{P}\left(F_{t}^{g}\right) \tag{A.3}
\end{equation*}
$$

Let us upper-bound the probability of F_{t}^{g}. At step t, we define the event that an individual $i \in \mathrm{Ind}^{g}$ is wellbehaved if its empirical fitness is larger (respectively lesser) than its true fitness minus (respectively plus) β (u, t) if $i \in \mathrm{Top}^{g}$ (respectively $i \in$ Boт g):

$$
W B_{i}^{g, t}(u) \stackrel{\operatorname{def}}{=} \begin{cases}\hat{f}_{i}^{g, t} \geq f_{i}-\beta(u, t) & \text { if } i \in \operatorname{Tor}^{g}, \text { and, } \tag{A.4}\\ \hat{f}_{i}^{g, t} \leq f_{i}+\beta(u, t) & \text { if } i \in \operatorname{BoT}^{g}\end{cases}
$$

Intuitively, a well-behaved individual is one whose estimated empirical fitness would yield a correct guess of belonging to Top^{g} or Bot^{g}. Let us show that the event F_{t}^{g} implies the event $\left(\exists i \in \operatorname{InD}^{g}, \neg W B_{i}^{g, t}\left(u_{i}^{g, t}\right)\right)$. In plain words, if LUCIE fails at step t of generation g, then, there necessarily exists a non well-behaved individual. Suppose that F_{t}^{g} is true. This means an individual $i \in \mathrm{BAD}^{g}$ has been recommended, i.e., $i \in \mathrm{HIGH}^{g, t}$. Necessarily, an (ϵ, μ)-optimal individual $j \in \operatorname{Good}^{g}$ has not been recommended, i.e., $j \in$ Low $^{g, t}$. Now, let us suppose that i is well-behaved, i.e.,

$$
\hat{f}_{i}^{g, t} \leq f_{i}+\beta\left(u_{i}^{g, t}, t\right)
$$

Since $i \in \operatorname{High}^{g, t}$ and $j \in \operatorname{Low}^{g, t}$, and the stopping criterion (Equation 2) has been met, we have that

$$
\hat{f}_{j}^{g, t}+\beta\left(u_{j}^{g, t}, t\right) \leq \hat{f}_{i}^{g, t}-\beta\left(u_{i}^{g, t}, t\right)+\epsilon
$$

Since $i \in \mathrm{BAD}^{g}$ and $j \in \mathrm{Good}^{g}$, we have that

$$
f_{i}<f_{j}-\epsilon
$$

Combining the three previous inequalities, we get that

$$
\begin{aligned}
f_{j} & >f_{i}+\epsilon \\
& >\hat{f}_{i}^{g, t}-\beta\left(u_{i}^{g, t}, t\right)+\epsilon \\
& >\hat{f}_{j}^{g, t}+\beta\left(u_{j}^{g, t}, t\right)
\end{aligned}
$$

which implies that j is not well-behaved. As a conclusion, either i or j is not well-behaved, thus:

$$
\begin{equation*}
F_{t}^{g} \Longrightarrow\left(\exists i \in \operatorname{IND}^{g}, \neg W B_{i}^{g, t}\left(u_{i}^{g, t}\right)\right) \tag{A.5}
\end{equation*}
$$

Note that the random variable $u_{i}^{g, t}$ is greater than 1, regardless of the sampling strategy \mathcal{S}, as all individuals must be sampled at least once. We inject the previous result in Equation A.3:

$$
\begin{array}{rlrl}
\mathbb{P}\left(F^{g}\right) & \leq \sum_{t=1}^{\infty} \mathbb{P}\left(F_{t}^{g}\right) & & \text { (from A.3) } \\
& \leq \sum_{t=1}^{\infty} \mathbb{P}\left(\exists i \in \operatorname{IND}^{g}, \neg W B_{i}^{g, t}\left(u_{i}^{g, t}\right)\right) & & \\
& \leq \sum_{t=1}^{\infty} \sum_{j=1}^{n} \mathbb{P}\left(\neg W B_{j}^{g, t}\left(u_{j}^{g, t}\right)\right) & & \text { (from A.5) } \\
& \leq \sum_{t=1}^{\infty} \sum_{j=1}^{n} \sum_{u=1}^{\infty} \mathbb{P}\left(\neg W B_{j}^{g, t}(u)\right) & & \text { (union bound on } j \text {) } \\
& \leq \sum_{t=1}^{\infty} \sum_{j=1}^{n} \sum_{u=1}^{\infty} \exp \left(-2 u \beta(u, t)^{2}\right) . & \text { (Hoeffding's bound) }
\end{array}
$$

More precisely, about the use of the Hoeffding's bound in the last step, the probability of an individual not being well-behaved is the probability that its empirical fitness deviates from its true fitness by at least $\beta(u, t)$. By symmetry between the two cases where the individual belongs to Top^{g} or Bot^{g}, the same one-sided Hoeffding's bound applies. Finally, choosing β such that

$$
\sum_{i=1}^{n} \sum_{t=1}^{\infty} \sum_{u=1}^{\infty} \exp \left(-2 u \beta(u, t)^{2}\right) \leq \delta
$$

implies $\mathbb{P}\left(F^{g}\right) \leq \delta$, which concludes the proof.

3 PROOF OF THEOREM 4.2

Claim: At generation g, the expected sample complexity of LUCIE is $O\left(\left(H^{g, \frac{\epsilon}{2}} \ln \left(\frac{H^{g, \frac{\epsilon}{2}}}{\delta}\right)\right)^{\frac{1}{\gamma}}\right)$, with γ a constant value such that $0<\gamma<0.57$.

The proof of this result shares a similar reasoning as the one of Theorem 6 of [2]. The main differences are brought by the fact that we here assume that previous bandit problems have been solved during former generations and thus, at the initialization of the new problem (i.e., current generation), some arms (or individuals) may already have been sampled.

We first introduce six Lemmas. To ease the comprehension, we encourage the reader to directly skip to the proof of the main theorem (page 14), which points back to the intermediate lemmas.

Lemma 3.1. Consider step t of generation g. By applying LUCIE with β defined in Equation 4,

$$
\mathbb{P}\left(\text { CROSS }^{g, t}\right) \leq \frac{\delta \zeta(2)}{k t^{4}}
$$

where ζ is the Riemann zeta function.
Proof. Without loss of generality, let i be an individual in Top^{g}. By definition, at step t, with c defined as the mean between the fitness of the "worst" individual in Top^{g} and the fitness of the "best" individual in Bot ${ }^{g}$
(Equation A.1),

$$
\begin{array}{rlr}
\mathbb{P}\left(\text { Cross }_{i}^{g, t}\right) & =\mathbb{P}\left(\hat{f}_{i}^{g, t}+\beta\left(u_{i}^{g, t}, t\right) \leq c\right) \\
& =\mathbb{P}\left(\hat{f}_{i}^{g, t} \leq f_{i}-\left(f_{i}+\beta\left(u_{i}^{g, t}, t\right)-c\right)\right) \\
& \leq \sum_{u=1}^{\infty} \mathbb{P}\left(\hat{f}_{i}^{g, t} \leq f_{i}-\left(f_{i}+\beta(u, t)-c\right)\right) & \\
& \leq \sum_{u=1}^{\infty} \exp \left(-2 u\left(f_{i}+\beta(u, t)-c\right)^{2}\right) & \text { (Hnion bound on } u \text {) } \\
& \leq \sum_{u=1}^{\infty} \exp \left(-2 u(\beta(u, t))^{2}\right) & \text { (as } f_{i}-c \geq 0 \text {) } \\
& \leq \sum_{u=1}^{\infty} \frac{\delta}{n k t^{4} u^{2}} \\
& \leq \frac{\delta \zeta(2)}{n k t^{4}}
\end{array}
$$

The same applies for $i \in \mathrm{Bot}^{g}$. The remainder of the proof follows naturally by applying the union bound over all individuals.

$$
\mathbb{P}\left(\operatorname{CROss}^{g, t}\right)=\mathbb{P}\left(\bigcup_{i=1}^{n} \operatorname{Cross}_{i}^{g, t}\right) \leq \sum_{i=1}^{n} \mathbb{P}\left(\operatorname{CROss}_{i}^{g, t}\right) \leq \sum_{i=1}^{n} \frac{\delta \zeta(2)}{n k t^{4}} \leq \frac{\delta \zeta(2)}{k t^{4}}
$$

Lemma 3.2. Consider step t of generation g. We define the number of samples $u_{i}^{*}(t) \in \mathbb{N}$ as

$$
u_{i}^{*}(t) \stackrel{\operatorname{def}}{=}\left[\left(\frac{2}{\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]^{2}} \ln \left(\frac{n k t^{4}}{\delta}\right)\right)^{\frac{1}{\gamma}}\right]
$$

with γ any constant value verifying $0<\gamma<0.57$. Then we have that $\forall u \geq u_{i}^{*}(t), \beta(u, t) \leq \frac{1}{2}\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]$.
Proof. The key argument of this proof consists in upper-bounding β by a looser bound $\bar{\beta}$ that we define as

$$
\bar{\beta}(u, t) \stackrel{\text { def }}{=} \sqrt{\frac{1}{2 u^{\gamma}} \ln \left(\frac{n k t^{4}}{\delta}\right)} .
$$

We first prove that β is indeed upper-bounded by $\bar{\beta}$ for any u, then we prove that when $u \geq u_{i}^{*}(t), \bar{\beta}$ is upperbounded by $\frac{1}{2}\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]$.

Upper-bound of β by $\bar{\beta}$. Consider $u, t \in \mathbb{N}$,

$$
\begin{align*}
\beta(u, t) \leq \bar{\beta}(u, t) & \Longleftrightarrow \sqrt{\frac{1}{2 u} \ln \left(\frac{n k t^{4} u^{2}}{\delta}\right)} \leq \sqrt{\frac{1}{2 u^{\gamma}} \ln \left(\frac{n k t^{4}}{\delta}\right)} \\
& \Longleftrightarrow \frac{\ln \left(\frac{n k t^{4} u^{2}}{\delta}\right)}{\ln \left(\frac{n k t^{4}}{\delta}\right)} \leq u^{1-\gamma} \\
& \Longleftrightarrow \ln \left(\frac{\ln \left(\frac{n k t^{4} u^{2}}{\delta}\right)}{\ln \left(\frac{n k t^{4}}{\delta}\right)}\right) \leq(1-\gamma) \ln (u) \\
& \Longleftrightarrow \gamma \leq 1-\frac{1}{\ln (u)} \ln \left(\frac{\ln \left(\frac{n k t^{4} u^{2}}{\delta}\right)}{\ln \left(\frac{n k t^{4}}{\delta}\right)}\right) \\
& \Longleftrightarrow \gamma \leq 1-\frac{1}{\ln (u)} \ln \left(1+\frac{2 \ln (u)}{\ln \left(\frac{n k t^{4}}{\delta}\right)}\right) \tag{A.6}
\end{align*}
$$

We now show that the last statement is true for any value of t, u and for any γ such that $0<\gamma<0.57$. First, remark that, as $x \mapsto \ln (1+x)$ is bounded by the identity function on \mathbb{R}^{+}, the right hand side of the previous inequality is lower-bounded by

$$
1-\frac{2}{\ln \left(\frac{n k t^{4}}{\delta}\right)}
$$

This quantity is itself lower-bounded by its minimum value, reached with the minimum values of $n=2, t=2$, and the maximum value of $\delta=0.5$. Indeed, the population size cannot be strictly less than 2 by assumption, the number of steps t is at least equal to this number as all individuals are sampled at the beginning of a generation. By replacing the values, we get

$$
1-\frac{2}{\ln \left(\frac{n k k^{4}}{\delta}\right)} \geq 1-\frac{2}{\ln \left(\frac{2 \times \pi^{6} \times 2^{4}}{0.5 \times 540}\right)} \approx 0.577
$$

Overall, as $\gamma<0.57$, we have for any value of t and u that

$$
\gamma<1-\frac{2}{\ln \left(\frac{n k t^{4}}{\delta}\right)} \leq 1-\frac{1}{\ln (u)} \ln \left(1+\frac{2 \ln (u)}{\ln \left(\frac{n k t^{4}}{\delta}\right)}\right),
$$

which validates the statement made in Equation A.6. This statement is equivalent to $\beta(u, t) \leq \bar{\beta}(u, t)$ for any values of u, t, which validates that $\bar{\beta}$ is an upper-bound on β.

Upper-bound of β by $\frac{1}{2}\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]$. The result is straightforward by showing that $\bar{\beta}$ is upper-bounded by $\frac{1}{2}\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]$ if $u \geq u_{i}^{*}(t)$.

$$
\begin{aligned}
\bar{\beta}(u, t) \leq \frac{1}{2}\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right] & \Longleftrightarrow \sqrt{\frac{1}{2 u^{\gamma}} \ln \left(\frac{n k t^{4}}{\delta}\right)} \leq \frac{1}{2}\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right] \\
& \Longleftrightarrow \frac{1}{u^{\gamma}} \ln \left(\frac{n k t^{4}}{\delta}\right) \leq \frac{1}{2}\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]^{2} \\
& \Longleftrightarrow u \geq\left(\frac{2}{\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]^{2}} \ln \left(\frac{n k t^{4}}{\delta}\right)\right)^{\frac{1}{\gamma}} \\
& \Longleftrightarrow u \geq u_{i}^{*}(t) .
\end{aligned}
$$

The bound on β follows immediately with the fact that $\bar{\beta}$ is an upper-bound on β.

Lemma 3.3. Consider stept of generation g, for any constant value $C_{1}>3^{\frac{2}{r}}$, we have that

$$
\mathbb{P}\left(\exists i \in I_{N D}{ }^{g},\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge N E E D Y_{i}^{g, t}\right) \leq C_{2} \frac{\delta H^{g, \frac{\epsilon}{2}}}{n k t^{4}}
$$

with $C_{2}>0$ another constant value.

Proof. We distinguish between the two cases of the relative position of Δ_{i} and $\frac{\epsilon}{2}$. We will use the set Middle ${ }^{g, t}$, defined in Equation A.2, corresponding to the individuals whose confidence interval comprises the value c (Equation A.1). If $\Delta_{i} \leq \frac{\epsilon}{2}$, the result follows easily, consider $i \in \mathrm{IND}^{g}$:

$$
\begin{aligned}
\mathbb{P}\left(\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge \operatorname{NEEDY}_{i}^{g, t} \left\lvert\, \Delta_{i} \leq \frac{\epsilon}{2}\right.\right) & =\mathbb{P}\left(\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge\left(i \in \operatorname{MidDLE}^{g, t}\right) \wedge\left(\beta\left(u_{i}^{g, t}, t\right)>\frac{\epsilon}{2}\right)\right) \\
& \leq \mathbb{P}\left(\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge\left(\beta\left(u_{i}^{g, t}, t\right) \geq \frac{\epsilon}{2}\right)\right) \\
& \leq \sum_{u=C_{1} u_{i}^{*}(t)+1}^{\infty} \mathbb{P}\left(\beta(u, t) \geq \frac{\epsilon}{2}\right) . \\
& \leq 0
\end{aligned}
$$

The last inequality comes from the fact that $C_{1} u_{i}^{*}(t)>u_{i}^{*}(t)$ and we know from Lemma 3.2 that $\beta(u, t)<$ $\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]=\frac{\epsilon}{2}$ for any $u \geq u_{i}^{*}(t)$. Hence, $\mathbb{P}\left(\beta(u, t) \geq \frac{\epsilon}{2}\right)=0$, for such a value of u, which proves the first case.

Consider now the less trivial case where $\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]=\Delta_{i}$. Without loss of generality, consider $i \in \operatorname{Top}{ }^{g}$.

$$
\begin{aligned}
\mathbb{P}\left(\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge \operatorname{NEEDY}_{i}^{g, t} \left\lvert\, \Delta_{i}>\frac{\epsilon}{2}\right.\right) & =\mathbb{P}\left(\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge\left(i \in \operatorname{MidDLE}^{g, t}\right) \wedge\left(\beta\left(u_{i}^{g, t}, t\right)>\frac{\epsilon}{2}\right)\right) \\
& \leq \mathbb{P}\left(\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge\left(i \in \operatorname{MidDLE}^{g, t}\right)\right) \\
& \leq \mathbb{P}\left(\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge\left(\hat{f}_{i}^{g, t}-\beta\left(u_{i}^{g, t}, t\right) \leq c\right)\right) \\
& \leq \sum_{u=C_{1} u_{i}^{*}(t)+1}^{\infty} \mathbb{P}\left(\hat{f}_{i}^{g, t}-\beta(u, t) \leq c\right) \\
& \leq \sum_{u=C_{1} u_{i}^{*}(t)+1}^{\infty} \mathbb{P}\left(\hat{f}_{i}^{g, t} \leq f_{i}-\left(f_{i}-c-\beta(u, t)\right)\right) \\
& \leq \sum_{u=C_{1} u_{i}^{*}(t)+1}^{\infty} \exp \left(-2 u\left(f_{i}-c-\beta(u, t)\right)^{2}\right) \\
& \leq \sum_{u=C_{1} u_{i}^{*}(t)+1}^{\infty} \exp \left(-2 u\left(f_{i}-c-\bar{\beta}(u, t)\right)^{2}\right)
\end{aligned}
$$

The last inequality comes from the fact that $\beta(u, t) \leq \bar{\beta}(u, t) \leq \frac{\Delta_{i}}{2}$ on one hand, and, $\frac{\Delta_{i}}{2} \leq f_{i}-c \leq \Delta_{i}$, on the other hand (can be shown by using the definition of Δ_{i} and the triangle inequality). This allows writing that

$$
\left(f_{i}-c-\bar{\beta}(u, t)\right)^{2} \leq\left(f_{i}-c-\beta(u, t)\right)^{2},
$$

hence we can upper-bound the right hand side by replacing β by $\bar{\beta}$. Developing the definition of $\bar{\beta}$, we get the following:

$$
\begin{align*}
\mathbb{P}\left(\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge \operatorname{NeEDY}_{i}^{g, t} \left\lvert\, \Delta_{i}>\frac{\epsilon}{2}\right.\right) & \left.\leq \sum_{u=C_{1} u_{i}^{*}(t)+1}^{\infty} \exp \left(-2 u\left(f_{i}-c-\sqrt{\frac{1}{2 u^{\gamma}} \ln \left(\frac{n k t^{4}}{\delta}\right.}\right)\right)^{2}\right) \\
& \leq \sum_{u=C_{1} u_{i}^{*}(t)+1}^{\infty} \exp \left(-2 u \Delta_{i}^{2}\left(\frac{f_{i}-c}{\Delta_{i}}-\frac{1}{u^{\frac{\gamma}{2}}} \sqrt{\frac{1}{2 \Delta_{i}^{2}} \ln \left(\frac{n k t^{4}}{\delta}\right)}\right)^{2}\right) \\
& \leq \sum_{u=C_{1} u_{i}^{*}(t)+1}^{\infty} \exp \left(-2 u \Delta_{i}^{2}\left(\frac{f_{i}-c}{\Delta_{i}}-\frac{1}{2}\left(\frac{u_{i}^{*}(t)}{u}\right)^{\frac{\gamma}{2}}\right)^{2}\right) \tag{A.7}
\end{align*}
$$

In this last expression, we have that $u>C_{1} u_{i}^{*}(t)$, which implies, with $C_{1}>1$, that

$$
\frac{1}{2}\left(\frac{u_{i}^{*}(t)}{u}\right)^{\frac{\gamma}{2}}<\frac{1}{2} \frac{1}{C_{1}^{\frac{\gamma}{2}}}<\frac{1}{2}
$$

At the same time, we have by definition of Δ_{i} that

$$
\frac{1}{2} \leq \frac{f_{i}-c}{\Delta_{i}}
$$

Combining both inequalities, we get that

$$
\begin{aligned}
\left(\frac{f_{i}-c}{\Delta_{i}}-\frac{1}{2}\left(\frac{u_{i}^{*}(t)}{u}\right)^{\frac{\gamma}{2}}\right) & \geq\left(\frac{1}{2}-\frac{1}{2} \frac{1}{C_{1}^{\frac{\gamma}{2}}}\right)^{2} \\
\Longrightarrow \exp \left(-2 u \Delta_{i}^{2}\left(\frac{f_{i}-c}{\Delta_{i}}-\frac{1}{2}\left(\frac{u_{i}^{*}(t)}{u}\right)^{\frac{\gamma}{2}}\right)\right) & \leq \exp \left(-2 u \Delta_{i}^{2}\left(\frac{1}{2}-\frac{1}{2} \frac{1}{C_{1}^{\frac{\gamma}{2}}}\right)^{2}\right)
\end{aligned}
$$

We write $\tilde{C} \stackrel{\text { def }}{=}\left(\frac{1}{2}-\frac{1}{2} \frac{1}{C_{1}^{\frac{y}{2}}}\right)^{2}$ and inject this result in Equation A.7:

$$
\mathbb{P}\left(\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge \operatorname{NeEDY}_{i}^{g, t} \left\lvert\, \Delta_{i}>\frac{\epsilon}{2}\right.\right) \leq \sum_{u=C_{1} u_{i}^{*}(t)+1}^{\infty} \exp \left(-2 \tilde{C} u \Delta_{i}^{2}\right)
$$

Then, by remarking that the function $g: u \mapsto \exp \left(-2 \tilde{C} u \Delta_{i}^{2}\right)$ is strictly decreasing, one can upper-bound the sum of $u \mapsto g(u)$ by the integral of $u \mapsto g(u-1)$, which implies

$$
\begin{align*}
\mathbb{P}\left(\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge \operatorname{NEEDY}_{i}^{g, t} \left\lvert\, \Delta_{i}>\frac{\epsilon}{2}\right.\right) & \leq \int_{C_{1} u_{i}^{*}(t)}^{\infty} \exp \left(-2 \tilde{C} u \Delta_{i}^{2}\right) d u \\
& \leq \frac{1}{2 \tilde{C} \Delta_{i}^{2}} \exp \left(-2 \Delta_{i}^{2} C_{1} \tilde{C} u_{i}^{*}(t)\right) \\
& \leq \frac{1}{2 \tilde{C} \Delta_{i}^{2}} \exp \left(-2 \Delta_{i}^{2} C_{1} \tilde{C}\left(\frac{2}{\Delta_{i}^{2}} \ln \left(\frac{n k t^{4}}{\delta}\right)\right)^{\frac{1}{\gamma}}\right) \\
& \leq \frac{1}{2 \tilde{C} \Delta_{i}^{2}} \exp \left(-2 \Delta_{i}^{2} C_{1} \tilde{C} \frac{2}{\Delta_{i}^{2}} \ln \left(\frac{n k t^{4}}{\delta}\right)\right) \tag{A.8}\\
& \leq \frac{1}{2 \tilde{C} \Delta_{i}^{2}} \exp \left(-4 C_{1} \tilde{C} \ln \left(\frac{n k t^{4}}{\delta}\right)\right) \\
& \leq \frac{1}{2 \tilde{C} \Delta_{i}^{2}} \exp \left(-\ln \left(\frac{n k t^{4}}{\delta}\right)\right) \tag{A.9}\\
& \leq \frac{\delta}{2 \tilde{C} \Delta_{i}^{2} n k t^{4}} .
\end{align*}
$$

Equation A. 8 comes from the fact that $\gamma<1$, which implies $x^{\frac{1}{\gamma}} \geq x$ for any $x>1$. To demonstrate Equation A.9, one can show that $4 C_{1} \tilde{C}>1$ by using the fact that we set $C_{1}>3^{\frac{2}{r}}$.

Finally, to prove the result, we use the union bound over all the individuals:

$$
\begin{aligned}
\mathbb{P}\left(\exists i \in \operatorname{IND}^{g},\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge \operatorname{NEEDY}_{i}^{g, t}\right) & \leq \sum_{i \in \operatorname{IND}^{g}} \mathbb{P}\left(\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge \operatorname{NeEDY}_{i}^{g, t}\right) \\
& \leq \sum_{i \in \operatorname{IND}^{g}} \mathbb{P}\left(\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge \operatorname{NEEDY}_{i}^{g, t} \left\lvert\, \Delta_{i} \leq \frac{\epsilon}{2}\right.\right)+ \\
& \leq 0+\sum_{\substack{i \in \operatorname{InD} g^{g} \\
\Delta_{i}>\frac{\epsilon}{2}}} \frac{\delta}{2 \tilde{C} \Delta_{i}^{2} n k t^{4}} \\
& \leq \frac{\delta}{2 \tilde{C} n k t^{4}} \sum_{i=1}^{n} \frac{1}{\Delta_{i}^{2}} \\
& \leq \frac{\delta H_{i}^{g, \frac{\epsilon}{2}}}{2 \tilde{C} n k t^{4}}
\end{aligned}
$$

which concludes the proof by defining the constant $C_{2} \stackrel{\text { def }}{=} \frac{1}{2 \tilde{C}}>0$.

We introduce a third lemma, borrowed from [2] (Lemma 2), showing that if the algorithm does not terminate and Cross ${ }^{g, t}$ is not verified, then $h_{*}^{g, t}$ or $l_{*}^{g, t}$ is necessarily needy. As the assumptions are the same as [2], we refer the reader to this paper for a formal proof. This result suggests that both individuals $h_{*}^{g, t}$ and $l_{*}^{g, t}$ are good candidates for sampling, in order to reach the termination criterion of Equation 2.

Lemma 3.4. (Lemma 2 of [2]) At any stept of generation g, we have that

$$
\neg C_{R O S S}{ }^{g, t} \wedge \neg T_{E R M^{g, t}}^{\Longrightarrow} \operatorname{NEEDY}_{h_{*}^{g, t}}^{g, t} \vee \operatorname{NEEDY}_{l_{*}^{g, t}}^{g, t}
$$

The following lemma gives a lower-bound on the number of steps t after which $2+\sum_{i \in \operatorname{In⿻}}{ }^{g} 32 u_{i}^{*}(t) \leq t$. It will be used in Lemma 3.6 to indicate the number of steps required for termination with a bounded probability.

Lemma 3.5. At generation g, there exists a constant $C_{3}>0$ such that,

$$
t \geq C_{3}\left(H^{g, \frac{\epsilon}{2}} \ln \left(\frac{H^{g, \frac{\epsilon}{2}}}{\delta}\right)\right)^{\frac{1}{\gamma}} \Longrightarrow 2+2 \sum_{i \in I_{N D} g} C_{1} u_{i}^{*}(t)<t
$$

with $C_{1}>3^{\frac{2}{r}}$ defined in Lemma 3.3.

Proof. We develop the expression $2+2 \sum_{i \in \operatorname{IND}} C_{1} u_{i}^{*}(t)$ using the definition of $u_{i}^{*}(t)$ and derive an upperbound:

$$
\begin{array}{rlr}
2+2 \sum_{i \in \operatorname{IND} g} C_{1} u_{i}^{*}(t) & =2+2 \sum_{i \in \mathrm{IND}^{g}} C_{1}\left[\left(\frac{2}{\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]^{2}} \ln \left(\frac{n k t^{4}}{\delta}\right)\right)^{\frac{1}{\gamma}}\right] & \text { (from Lemma 3.2) } \tag{fromLemma3.2}\\
& \leq 2+2 C_{1} n+2 C_{1} \sum_{i \in \operatorname{IND} g}\left(\frac{2}{\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]^{2}} \ln \left(\frac{n k t^{4}}{\delta}\right)\right)^{\frac{1}{\gamma}} & (\text { as }\lceil x\rceil \leq 1+x) \\
& \leq 2+2 C_{1} n+2^{1+\frac{1}{\gamma}} C_{1}\left(\ln \left(\frac{n k t^{4}}{\delta}\right)\right)^{\frac{1}{\gamma}} \sum_{i \in \operatorname{InD} g}\left(\frac{1}{\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]^{2}}\right)^{\frac{1}{\gamma}} & \\
& \leq 2+2 C_{1} n+2^{1+\frac{1}{\gamma}} C_{1}\left(\ln (k)+\ln \left(\frac{n}{\delta}\right)+4 \ln (t)\right)^{\frac{1}{\gamma}}\left(H^{g, \frac{\epsilon}{2}}\right)^{\frac{1}{\gamma}}, &
\end{array}
$$

where we used the fact that $\sum_{i \in \operatorname{InD}^{g}}\left(\frac{1}{\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]^{2}}\right)^{\frac{1}{\gamma}} \leq\left(\sum_{i \in \operatorname{InD}^{g}} \frac{1}{\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]^{2}}\right)^{\frac{1}{\gamma}}=\left(H^{g, \frac{\epsilon}{2}}\right)^{\frac{1}{\gamma}}$ as $\frac{1}{\gamma}>1$ and for all $i \in \operatorname{InD}^{g}$, $\frac{1}{\left[\Delta_{i} \wedge \frac{\epsilon}{2}\right]^{2}} \geq 1$. To simplify the notation, let us write $\varphi(t)$ the right-hand side of the last inequality:

$$
\varphi(t) \stackrel{\text { def }}{=} 2+2 C_{1} n+2^{1+\frac{1}{\gamma}} C_{1}\left(\ln (k)+\ln \left(\frac{n}{\delta}\right)+4 \ln (t)\right)^{\frac{1}{\gamma}}\left(H^{g, \frac{\epsilon}{2}}\right)^{\frac{1}{\gamma}}
$$

and let $T=C_{3}\left(H^{g, \frac{\epsilon}{2}} \ln \left(\frac{H^{g, \frac{\epsilon}{2}}}{\delta}\right)\right)^{\frac{1}{\gamma}}, C_{3}>0$. We now prove that there indeed exists $C_{3}>0$ such that $\varphi(T) \leq T$. The proof will then follow easily by remarking that $t \mapsto \varphi(t)$ is a polylogarithmic function and is thus dominated by the identity function after reaching a certain constant value of t. Replacing T, we have:

$$
\begin{align*}
\varphi(T) & =2+2 C_{1} n+2^{1+\frac{1}{\gamma}} C_{1}\left(H^{g, \frac{\epsilon}{2}}\right)^{\frac{1}{\gamma}}\left(\ln (k)+\ln \left(\frac{n}{\delta}\right)+4 \ln \left(C_{3}\right)+\frac{4}{\gamma} \ln \left(H^{g, \frac{\epsilon}{2}}\right)+\frac{4}{\gamma} \ln \left(\ln \left(\frac{H^{g, \frac{\epsilon}{2}}}{\delta}\right)\right)\right)^{\frac{1}{\gamma}} \\
& \leq 2+2 C_{1} n+2^{1+\frac{1}{\gamma}} C_{1}\left(H^{g, \frac{\epsilon}{2}}\right)^{\frac{1}{\gamma}}\left(\ln (k)+\ln \left(\frac{n}{\delta}\right)+4 \ln \left(C_{3}\right)+\frac{4}{\gamma} \ln \left(H^{g, \frac{\epsilon}{2}}\right)+\frac{4}{\gamma} \ln \left(\frac{H^{g, \frac{\epsilon}{2}}}{\delta}\right)\right)^{\frac{1}{\gamma}} \\
& \leq 2^{1+\frac{1}{\gamma}} C_{1}\left(H^{g, \frac{\epsilon}{2}}\right)^{\frac{1}{\gamma}}\left(3+\ln (k)+\ln \left(\frac{n}{\delta}\right)+4 \ln \left(C_{3}\right)+\frac{4}{\gamma} \ln \left(H^{g, \frac{\epsilon}{2}}\right)+\frac{4}{\gamma} \ln \left(\frac{H^{g, \frac{\epsilon}{2}}}{\delta}\right)\right)^{\frac{1}{\gamma}}, \tag{A.10}
\end{align*}
$$

Where we used the three facts that $n \leq H^{g, \frac{\epsilon}{2}} \leq\left(H^{g, \frac{\epsilon}{2}}\right)^{\frac{1}{\gamma}}, 2^{1+\frac{1}{\gamma}} C_{1} H^{g, \frac{\epsilon}{2}}>1$ and $x+y^{\frac{1}{\gamma}}<(x+y)^{\frac{1}{\gamma}}$ for any $x, y \geq 1$. Recall that

$$
2 \leq n \leq H^{g, \frac{\epsilon}{2}} \leq \frac{H^{g, \frac{\epsilon}{2}}}{\delta}
$$

We use this fact to upper bound $\ln \left(\frac{n}{\delta}\right)$ and $\ln \left(H^{g, \frac{\epsilon}{2}}\right)$ by $\ln \left(\frac{H^{g, \frac{\epsilon}{2}}}{\delta}\right)$ in Equation A.10. We can in turn factorize everything by $\ln \left(\frac{H^{g g^{\frac{\epsilon}{2}}}}{\delta}\right)$, yielding

$$
\begin{aligned}
\varphi(T) & \leq 2^{1+\frac{1}{\gamma}} C_{1}\left(H^{g, \frac{\epsilon}{2}}\right)^{\frac{1}{\gamma}}\left(3+\ln (k)+1+4 \ln \left(C_{3}\right)+\frac{4}{\gamma}+\frac{4}{\gamma}\right)^{\frac{1}{\gamma}}\left(\ln \left(\frac{H^{g, \frac{\epsilon}{2}}}{\delta}\right)\right)^{\frac{1}{\gamma}} \\
& \leq 2^{1+\frac{1}{\gamma}} C_{1}\left(4+\ln (k)+4 \ln \left(C_{3}\right)+\frac{8}{\gamma}\right)^{\frac{1}{\gamma}}\left(H^{g, \frac{\epsilon}{2}} \ln \left(\frac{H^{g, \frac{\epsilon}{2}}}{\delta}\right)\right)^{\frac{1}{\gamma}}
\end{aligned}
$$

We chose C_{3} such that $C_{3} \geq 2^{1+\frac{1}{\gamma}} C_{1}\left(4+\ln (k)+4 \ln \left(C_{3}\right)+\frac{8}{\gamma}\right)^{\frac{1}{\gamma}}$, which is always proven to exist as all polylogarithmic functions are dominated by any polynomial, particularly the identity function. For such a choice of C_{3}, we thus have that

$$
\varphi(T) \leq C_{3}\left(H^{g, \frac{\epsilon}{2}} \ln \left(\frac{H^{g, \frac{\epsilon}{2}}}{\delta}\right)\right)^{\frac{1}{\gamma}}=T
$$

Now, by remarking that $t \mapsto \varphi(t)$ is a polylogarithmic function, specifically written in the form

$$
\varphi(t)=A \ln (B t)^{\frac{1}{\gamma}}+C
$$

where A, B, and C are positive constants, we have that it is $o\left((B t)^{\tilde{\epsilon}}\right)$ for any exponent $\tilde{\epsilon}>0$. Thus, for any positive constant $\bar{\epsilon}>0$, there exists a constant t_{0} such that $\varphi(t) \leq \bar{\epsilon}(B t)^{\tilde{\epsilon}}$ for any $t \geq t_{0}$. By picking adequately small values for having $\bar{\epsilon}(B t)^{\tilde{\epsilon}} \leq t$, we thus have the guarantee that there exists a constant t_{0} such that $\varphi(t)<t$ for any $t \geq t_{0}$. We use this fact to chose C_{3} large enough for T to be larger than t_{0}. We thus have that $2+$ $2 \sum_{i \in \mathrm{IND}} C_{1} u_{i}^{*}(t)<t$ for any $t \geq T$, which completes the proof.

We now consider the probability of non termination after t steps during generation g, and show that after a certain threshold on t, this probability is bounded by a decreasing value with t.

Lemma 3.6. During generation g, for any $t \geq 2 C_{3}\left(H^{g, \frac{\epsilon}{2}} \ln \left(\frac{H^{g, \frac{\epsilon}{2}}}{\delta}\right)\right)^{\frac{1}{\gamma}}$ (where C_{3} is defined in Lemma 3.5), the probability that LUCIE has not terminated after t steps is at most $\frac{C_{4} \delta}{t^{2}}$, with C_{4} a strictly positive constant.

Proof. Consider $T=C_{3}\left(H^{g, \frac{\epsilon}{2}} \ln \left(\frac{H^{g, \frac{\epsilon}{2}}}{\delta}\right)\right)^{\frac{1}{\gamma}}$, and E_{1}, E_{2} the events described in Lemma 3.1 and 3.3 for $t \in$ $\{T, \ldots, 2 T-1\}$, defined as

$$
\begin{aligned}
& E_{1} \stackrel{\text { def }}{=} \exists t \in\{T, \ldots, 2 T-1\}, \operatorname{CrOss}^{g, t} \\
& E_{2} \stackrel{\operatorname{def}}{=} \exists t \in\{T, \ldots, 2 T-1\}, \exists i \in \operatorname{InD}^{g},\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge \operatorname{NEEDY}_{i}^{g, t}
\end{aligned}
$$

We first demonstrate the following implication:

$$
\begin{equation*}
\neg E_{1} \wedge \neg E_{2} \Longrightarrow \exists t \leq 2 T-1, \mathrm{TERM}^{g, t} \tag{A.11}
\end{equation*}
$$

Suppose for now that $\neg E_{1} \wedge \neg E_{2}$. Let $N_{\text {non-term }}$ be the random variable of the number of steps during which $\neg \mathrm{TERM}^{g, t}$ is true, for $t \in\{1, \ldots, 2 T-1\}$. Our goal is to show that, necessarily, $N_{\text {non-term }}<2 T-1$. This would imply that there exists $t \leq 2 T-1$ such that TERM ${ }^{g, t}$. Recall that if TERM ${ }^{g, t}$ is true, then for all $t^{\prime} \geq t$, Term $^{g, t^{\prime}}$ is also true.

We distinguish two cases. If $\mathrm{Term}^{g, T}$ is true, then we have $N_{\text {non-term }} \leq T<2 T-1$. Else, assume the stopping criterion has not been reached at step T, i.e., \neg TERM ${ }^{g, T}$. Let $N_{\text {remain }}$ be the random variable of the number of steps during which \neg Term $^{g, t}$ for $t \in\{T, \ldots, 2 T-1\}$, defined as:

$$
N_{\text {remain }}=\sum_{t=T}^{2 T-1} \mathbf{1}\left(\neg \mathrm{TERM}^{g, t}\right)
$$

Since $\neg E_{1}$ is true, then for all $t \in\{T, \ldots, 2 T-1\}, \neg \operatorname{CrOss}^{g, t}$ is true. Consequently, we can write $N_{\text {remain }}$ as

$$
N_{\text {remain }}=\sum_{t=T}^{2 T-1} \mathbf{1}\left(\neg \mathrm{TERM}^{g, t} \wedge \neg{\mathrm{CROSS}^{g}}^{g, t}\right)
$$

By Lemma 3.4, we have that $\neg \operatorname{TERM}^{g, t} \wedge \neg$ Cross $^{g, t} \Longrightarrow \operatorname{NEEDY}_{h_{*}^{g, t}}^{g, t} \vee \operatorname{NEEDY}_{l_{*}^{g, t}}^{g, t}$ for any $t \in \mathbb{N}$. Hence we can upper-bound $N_{\text {remain }}$ by the number of times the sampling candidates are needy:

$$
\begin{align*}
N_{\text {remain }} & \leq \sum_{t=T}^{2 T-1} \mathbf{1}\left(\operatorname{NEEDY}_{h_{*}^{g, t}}^{g, t} \vee \operatorname{NEEDY}_{l_{*}^{g, t}}^{g, t}\right) \\
& \leq \sum_{t=T}^{2 T-1} \sum_{i \in \mathrm{IND}^{g}} \mathbf{1}\left(\left(i=h_{*}^{g, t} \vee i=l_{*}^{g, t}\right) \wedge \operatorname{NEEDY}_{i}^{g, t}\right) \tag{A.12}
\end{align*}
$$

Since $\neg E_{2}$ is true, then for any individual $i \in \operatorname{IND}^{g}$, either the event $\neg \operatorname{NEEDY}_{i}^{g, t}$ is true, either $\left(u_{i}^{g, t} \leq C_{1} u_{i}^{*}(t)\right)$:

$$
\begin{aligned}
\neg E_{2} & \Longleftrightarrow \forall t \in\{T, \ldots, 2 T-1\}, \forall i \in \operatorname{IND}^{g},\left(u_{i}^{g, t} \leq C_{1} u_{i}^{*}(t)\right) \vee \neg \operatorname{NeEDY}_{i}^{g, t} \\
& \Longleftrightarrow \forall t \in\{T, \ldots, 2 T-1\}, \forall i \in \operatorname{IND}^{g}, \operatorname{NeEDr}_{i}^{g, t} \Longrightarrow u_{i}^{g, t} \leq C_{1} u_{i}^{*}(t)
\end{aligned}
$$

Using this along with the fact that $t \mapsto u_{i}^{*}(t)$ is an increasing function, we have that

$$
\begin{align*}
N_{\text {remain }} & \leq \sum_{t=T}^{2 T-1} \sum_{i \in \mathrm{IND}} 1\left(\left(i=h_{*}^{g, t} \vee i=l_{*}^{g, t}\right) \wedge\left(u_{i}^{g, t} \leq C_{1} u_{i}^{*}(t)\right)\right) \tag{2}\\
& \leq \sum_{t=T}^{2 T-1} \sum_{i \in \mathrm{IND}^{g}} 1\left(\left(i=h_{*}^{g, t} \vee i=l_{*}^{g, t}\right) \wedge\left(u_{i}^{g, t} \leq C_{1} u_{i}^{*}(2 T)\right)\right) \tag{t<2T}\\
& \leq \sum_{i \in \mathrm{IND}^{g}} \sum_{t=T}^{2 T-1} 1\left(\left(i=h_{*}^{g, t} \vee i=l_{*}^{g, t}\right) \wedge\left(u_{i}^{g, t} \leq C_{1} u_{i}^{*}(2 T)\right)\right) \\
& \leq \sum_{i \in \operatorname{IND}^{g}} C_{1} u_{i}^{*}(2 T) .
\end{align*}
$$

The last step of this derivation comes from the fact that, at step t, the number of times an individual is selected (i.e., $\left.i=h_{*}^{g, t} \vee i=l_{*}^{g, t}\right)$ and its number of samples is lesser than $C_{1} u_{i}^{*}(2 T)$ cannot exceed $C_{1} u_{i}^{*}(2 T)$. Indeed, each time the individual is sampled, its number of samples is increased by 1 , which, along with the event $u_{i}^{g, t} \leq C_{1} u_{i}^{*}(2 T)$ cannot happen more than $C_{1} u_{i}^{*}(2 T)$ times. As $T=C_{3}\left(H^{g, \frac{\epsilon}{2}} \ln \left(\frac{H^{g, \frac{\epsilon}{2}}}{\delta}\right)\right)^{\frac{1}{\gamma}}$, according to Lemma 3.5, we thus have that

$$
N_{\text {remain }} \leq \sum_{i \in \operatorname{IND} g} C_{1} u_{i}^{*}(2 T)<\frac{2 T-2}{2}=T-1
$$

Overall, we have in this second case that

$$
N_{\text {non-term }}=T+N_{\text {remain }}<2 T-1 .
$$

Thus, in any case, $N_{\text {non-term }}<2 T-1$, which concludes our proof of the implication described in Equation A.11. Its counterpart is the following:

$$
\forall t \leq 2 T-1, \neg \text { TеRM }^{g, t} \Longrightarrow E_{1} \vee E_{2}
$$

Hence, the probability of verifying \neg TERM ${ }^{g, t}$ for the first time after $2 T$ steps is upper-bounded by the probability of $E_{1} \vee E_{2}$, for which we can use Lemma 3.1 and Lemma 3.3 to find an upper-bound:

$$
\begin{aligned}
\mathbb{P}\left(E_{1} \vee E_{2}\right) \leq & \mathbb{P}\left(E_{1}\right)+\mathbb{P}\left(E_{2}\right) \\
\leq & \mathbb{P}\left(\exists t \in\{T, \ldots, 2 T-1\}, \text { Cross }^{g, t}\right) \\
& +\mathbb{P}\left(\exists t \in\{T, \ldots, 2 T-1\}, \exists i \in \operatorname{InD}^{g},\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge \operatorname{NEEDY}_{i}^{g, t}\right) \\
\leq & \sum_{t=T}^{2 T-1} \mathbb{P}\left(\text { Cross }^{g, t}\right)+\sum_{t=T}^{2 T-1} \mathbb{P}\left(\exists i \in \operatorname{IND}^{g},\left(u_{i}^{g, t}>C_{1} u_{i}^{*}(t)\right) \wedge \operatorname{NEEDY}_{i}^{g, t}\right) \quad \text { (union bound) } \\
\leq & \sum_{t=T}^{2 T-1} \frac{\delta \zeta(2)}{k t^{4}}+C_{2} \frac{\delta H^{g, \frac{\epsilon}{2}}}{n k t^{4}} \quad \text { (from Lemma 3.1 and Lemma 3.3) } \\
\leq & \sum_{t=T}^{2 T-1} \frac{\delta}{k t^{4}}\left(\zeta(2)+C_{2} \frac{H^{g, \frac{\epsilon}{2}}}{n}\right) \quad \\
\leq & \sum_{t=T}^{2 T-1} \frac{\delta}{k T^{4}}\left(\zeta(2)+C_{2} \frac{H^{g, \frac{\epsilon}{2}}}{n}\right) \\
\leq & \frac{\delta}{k T^{2}}\left(\frac{\zeta(2)}{T}+\frac{C_{2}}{n} \frac{H^{g, \frac{\epsilon}{2}}}{T}\right) \\
\leq & \frac{C_{4} \delta}{T^{2}},
\end{aligned}
$$

where C_{4} is a positive constant. The existence of C_{4} comes from the fact that all quantities are upper-bounded by positive constants. Namely, as $n \geq 2$ and $\delta \leq 0.5$, if we write $T_{\min } \stackrel{\text { def }}{=} C_{3}\left(2 \ln \left(\frac{2}{0.5}\right)\right)^{\frac{1}{\gamma}}$ the minimum value of T, we have that

$$
\frac{\zeta(2)}{T} \leq \frac{\zeta(2)}{T_{\min }}, \frac{C_{2}}{n} \leq \frac{C_{2}}{2} \text {, and, } \frac{H^{g^{\frac{\epsilon}{2}}}}{T}=\frac{1}{C_{3}\left(H^{g, \frac{\epsilon}{2}}\right)^{\frac{1}{\gamma}-1}\left(\ln \left(\frac{H^{g^{g} \frac{\epsilon}{2}}}{\delta}\right)\right)^{\frac{1}{\gamma}}} \leq \frac{1}{C_{3}(2)^{\frac{1}{\gamma}-1}\left(\ln \left(\frac{2}{0.5}\right)\right)^{\frac{1}{r}}} .
$$

The proof is concluded by remarking that this is true for any $T \geq 2 C_{3}\left(H^{9, \frac{\epsilon}{2}} \ln \left(\frac{H^{9} \frac{\rho^{\frac{\epsilon}{2}}}{\delta}}{}\right)\right)^{\frac{1}{\gamma}}$.
Finally, Lemma 3.6 allows to demonstrate Theorem 4.2 as follows.
Proof. Following Lemma 3.6, consider $T^{*}=C_{3}\left(H^{g, \frac{\epsilon}{2}} \ln \left(\frac{H^{9} \sigma^{\frac{\epsilon}{\varepsilon}}}{\delta}\right)\right)^{\frac{1}{\gamma}}$. At generation g, the sample complexity, denoted by $S C$, is defined as the number of steps where the binary random variable \neg Тевм ${ }^{g}, t$ is true. As two individuals are sampled at each step, we have that $S C=2 \sum_{t=1}^{\infty} \neg$ Term $^{g, t}$. The result follows from taking the
expectation and applying Lemma 3.6:

$$
\begin{aligned}
\mathbb{E}(S C) & =2 \sum_{t=1}^{\infty} \mathbb{E}\left(\neg \mathrm{TERM}^{g, t}\right) \\
& =2 \sum_{t=1}^{\infty} 0 \times \mathbb{P}\left(\mathrm{TERM}^{g, t}\right)+1 \times \mathbb{P}\left(\neg \mathrm{TERM}^{g, t}\right) \\
& =2 \sum_{t=1}^{T^{*}} \mathbb{P}\left(\neg \mathrm{TERM}^{g, t}\right)+2 \sum_{t=T^{*}+1}^{\infty} \mathbb{P}\left(\neg \mathrm{TERM}^{g, t}\right) \\
& \leq 2 T^{*}+2 \sum_{t=T^{*}+1}^{\infty} \frac{C_{4} \delta}{T^{2}} \\
& \leq 2 C_{3}\left(H^{g, \frac{\epsilon}{2}} \ln \left(\frac{H^{g, \frac{\epsilon}{2}}}{\delta}\right)\right)^{\frac{1}{\gamma}}+C_{4} \delta \zeta(2) .
\end{aligned}
$$

4 PROOF OF THEOREM 4.3

Claim: For any noise model verifying H1, setting $\epsilon<1$ and $\delta \leq k c / N$, (1+1) LUCIE optimizes the stochastic OneMax problem in $O(N \ln (N))$ number of generations.

Proof. To prove the result, we show that applying (1+1) LUCIE amounts to the same setting as Theorem 4 of [1] while transferring the assumption on the degree of stochasticity (Equation 1 in their paper) to the parameter δ. Specifically, they prove that (1+1) Evolutionary Algorithm converges in $O(N \ln (N))$ generations under a restrictive assumptions on the problem's degree of stochasticity that we detail now along with their notations.

Given an individual $i \in \mathrm{IND}^{g}$, [1] introduce the notion of observation of the individual's fitness as a random variable, written X_{l}, for $f_{i}=l$ and $l \in\{0, \ldots, N\}$. Recall that, in this setting, only the observed fitness could be accessed by an algorithm as the evaluation protocol is subject to noise. To ease the comparison between ($1+1$) LUCIE and (1+1) EA, we will write $O(i)$ the observation of the fitness of individual i. At elite selection phase of generation g, the observation of the individual's fitness is different between both algorithms and we have:

$$
\begin{aligned}
& O(i) \sim X_{f_{i}} \text { for EA, } \\
& O(i)=\hat{f}_{i}^{g, t} \text { for LUCIE, given that TERM }{ }^{g, t} \text { is true. }
\end{aligned}
$$

In other words, during the selection of elites, we observe a single realization of the individual's fitness random variable in $(1+1)$ EA while we observe the empirical mean in ($1+1$) LUCIE. Alongside, there is one assumption, restricting the level of noise that the algorithm can handle, made in Theorem 4 of [1]:
H2: $\forall l<N, \forall c \in] 0, \frac{1}{9}[$,

$$
\mathbb{P}\left(X_{l}<X_{l+1}\right) \geq 1-c \frac{N-l}{N}
$$

Intuitively, successful elite selection for two individuals of fitness l and $l+1$ must happen with a probability that is not too low for $(1+1)$ EA to converge. This effect is accentuated with individuals having a true fitness close to N. Using our notations, this amounts to write:
H2: $\forall l<N, \forall c \in] 0, \frac{1}{9}\left[, \forall i_{1}, i_{2} \in \operatorname{InD}\right.$,

$$
\mathbb{P}\left(O\left(i_{1}\right)<O\left(i_{2}\right) \mid f_{i_{1}}=l, f_{i_{2}}=l+1\right) \geq 1-c \frac{N-l}{N}
$$

Let us now verify that H 2 is verified in the case of LUCIE. Consider two individuals $i_{1}, i_{2} \in \operatorname{Ind}$ and $l<N$.

$$
\begin{align*}
\mathbb{P}\left(O\left(i_{1}\right)<O\left(i_{2}\right) \mid f_{i_{1}}=l, f_{i_{2}}=l+1\right) & =\mathbb{P}\left(\hat{f}_{i_{1}}^{g, t}<\hat{f}_{i_{2}}^{g, t} \mid f_{i_{1}}=l, f_{i_{2}}=l+1\right) \\
& =1-\mathbb{P}\left(\hat{f}_{i_{1}}^{g, t} \geq \hat{f}_{i_{2}}^{g, t} \mid f_{i_{1}}=l, f_{i_{2}}=l+1\right) \tag{A.13}
\end{align*}
$$

The last term of the right-hand-side is linked with the failure probability of Theorem 4.1. Assume that $f_{i_{1}}=l$ and $f_{i_{2}}=l+1$, we show that the event of ${\hat{i_{1}}}_{g, t}^{t} \geq \hat{f}_{i_{2}}^{g, t}$ implies that either i_{1} or i_{2} is not well-behaved (Equation A.4). Assume that i_{1} is well-behaved. As $i_{1} \in \operatorname{Bot}^{g}$, we have that

$$
\hat{f}_{i_{1}}^{g, t} \leq f_{i_{1}}+\beta\left(u_{i_{1}}^{g, t}, t\right)
$$

Necessarily, as fitness are observed, this means in LUCIE that the stopping criterion (Equation 2) has been reached, here by suggesting i_{1} as elite individual:

$$
\hat{f}_{i_{1}}^{g, t}-\beta\left(u_{i_{1}}^{g, t}, t\right)+\epsilon \geq \hat{f}_{i_{2}}^{g, t}+\beta\left(u_{i_{2}}^{g, t}, t\right) .
$$

We now set $\epsilon<1$, so that we verify

$$
f_{i_{1}}<f_{i_{2}}-\epsilon
$$

Combining those inequalities, we get that

$$
f_{i_{2}}>f_{i_{1}}+\epsilon>\hat{f}_{i_{1}}^{g, t}-\beta\left(u_{i_{1}}^{g, t}, t\right)+\epsilon>\hat{f}_{i_{2}}^{g, t}+\beta\left(u_{i_{2}}^{g, t}, t\right)
$$

which implies that i_{2} is not well-behaved. Therefore, the event of $\hat{f}_{i_{1}}^{g, t} \geq \hat{f}_{i_{2}}^{g, t}$ implies that either i_{1} or i_{2} is not well-behaved. Hence, we have that

$$
\begin{aligned}
\mathbb{P}\left(\hat{f}_{i_{1}}^{g, t} \geq \hat{f}_{i_{2}}^{g, t} \mid f_{i_{1}}=l, f_{i_{2}}=l+1\right) & \leq \mathbb{P}\left(\neg W B_{i_{1}}^{g, t}\left(u_{i_{1}}^{g, t}\right) \vee \neg W B_{i_{2}}^{g, t}\left(u_{i_{2}}^{g, t}\right) \mid f_{i_{1}}=l, f_{i_{2}}=l+1\right) \\
& \leq \mathbb{P}\left(\exists i \in \operatorname{IND}^{g}, \neg W B_{i}^{g, t}\left(u_{i}^{g, t}\right) \mid f_{i_{1}}=l, f_{i_{2}}=l+1\right) \\
& \leq \sum_{i=1}^{n} \mathbb{P}\left(\neg W B_{i}^{g, t}\left(u_{i}^{g, t}\right) \mid f_{i_{1}}=l, f_{i_{2}}=l+1\right) \\
& \leq \sum_{i=1}^{n} \sum_{u=1}^{\infty} \mathbb{P}\left(\neg W B_{i}^{g, t}(u) \mid f_{i_{1}}=l, f_{i_{2}}=l+1\right) \\
& \leq \sum_{i=1}^{n} \sum_{u=1}^{\infty} \exp \left(-2 u \beta(u, t)^{2}\right) \quad \quad \text { (Hoeffding's bound) } \\
& \leq \sum_{i=1}^{n} \sum_{u=1}^{\infty} \frac{\delta}{n k t^{4} u^{2}} \\
& \leq \frac{\delta \zeta(2)}{k t^{4}} \\
& \leq \frac{\delta}{k},
\end{aligned}
$$

as $\zeta(2)<2$. Injected in Equation A.13, we get that

$$
\mathbb{P}\left(O\left(i_{1}\right)<O\left(i_{2}\right) \mid f_{i_{1}}=l, f_{i_{2}}=l+1\right) \geq 1-\frac{\delta}{k}
$$

To verify Assumption H2, we shall set $\delta / k \leq c(N-l) / N$, which is verified for all l for $\delta \leq k c / N$. Setting this condition on δ along with the condition $\epsilon<1$ and $c<1 / 9$ concludes the verification of the assumptions of Theorem 4 of [1]. In turn, applying this result concludes the proof.

5 PROOF OF THEOREM 4.4

Claim: For any noise model verifying H3 and H4, setting $\epsilon<1$ and $\delta \leq k / 12 N^{2}$, (1+1) LUCIE optimizes the stochastic LeadingOnes problem in $O\left(N^{2}\right)$ number of generations.

Proof. Similarly to the proof of Theorem 4.3, we demonstrate that applying (1+1) LUCIE amounts to the same setting as Theorem 11 of [1]. Again, the assumption on on the degree of stochasticity (Equation 3 in their paper) is transferred to a prerequisite on the value of δ. Borrowing the notations of [1], this assumption on the level of noise is the following:
H5: $\forall l \leq N, \forall c \in] 0, \frac{1}{12}[$,

$$
\mathbb{P}\left(X_{l}^{\mathrm{opt}}<X_{l+1}^{\mathrm{pes}}\right) \geq 1-\frac{c}{l N}
$$

Borrowing the same notations as in the proof of Theorem 4.3, this amounts to the following:
H5: $\forall l \leq N, \forall c \in] 0, \frac{1}{12}\left[, \forall i_{1}, i_{2} \in\right.$ Ind,

$$
\mathbb{P}\left(O\left(i_{1}\right)<O\left(i_{2}\right) \mid i_{1}=x_{l}^{\mathrm{opt}}, i_{2}=x_{l+1}^{\mathrm{pes}}\right) \geq 1-\frac{c}{l N},
$$

with the fact that an observation in $(1+1) \mathrm{EA}$ is a single sample of the random variable, while it is the empirical mean of several samples in $(1+1)$ LUCIE.

Let us now verify that H 5 is verified in the case of LUCIE. Consider two individuals $i_{1}, i_{2} \in \operatorname{Ind}$ and $l<N$.

$$
\begin{align*}
\mathbb{P}\left(O\left(i_{1}\right)<O\left(i_{2}\right) \mid i_{1}=x_{l}^{\mathrm{opt}}, i_{2}=x_{l+1}^{\mathrm{pes}}\right) & =\mathbb{P}\left(\hat{f}_{i_{1}}^{g, t}<\hat{f}_{i_{2}}^{g, t} \mid i_{1}=x_{l}^{\mathrm{opt}}, i_{2}=x_{l+1}^{\mathrm{pes}}\right) \\
& =1-\mathbb{P}\left(\hat{f}_{i_{1}}^{g, t} \geq \hat{f}_{i_{2}}^{g, t} \mid i_{1}=x_{l}^{\mathrm{opt}}, i_{2}=x_{l+1}^{\mathrm{pes}}\right) \tag{A.14}
\end{align*}
$$

The last term of the right-hand-side is linked with the failure probability of Theorem 4.1. Assume that $i_{1}=x_{l}^{\mathrm{opt}}$ and $i_{2}=x_{l+1}^{\text {pes }}$. Hence, $f_{i_{1}}=l$ and $f_{i_{2}}=l+1$. From now, we will use the same arguments as in the proof of Theorem 4.1 where we proved that $\mathbb{P}\left(\hat{f}_{i_{1}}^{g, t} \geq \hat{f}_{i_{2}}^{g, t} \mid f_{i_{1}}=l, f_{i_{2}}=l+1\right) \leq \frac{\delta \zeta(2)}{k t^{4}} \leq \frac{\delta}{k}$, yielding

$$
\mathbb{P}\left(\hat{f}_{i_{1}}^{g, t} \geq \hat{f}_{i_{2}}^{g, t} \mid i_{1}=x_{l}^{\mathrm{opt}}, i_{2}=x_{l+1}^{\mathrm{pes}}\right) \leq \frac{\delta}{k} .
$$

Injecting in Equation (A.14), we get that

$$
\mathbb{P}\left(O\left(i_{1}\right)<O\left(i_{2}\right) \mid i_{1}=x_{l}^{\mathrm{opt}}, i_{2}=x_{l+1}^{\mathrm{pes}}\right) \geq 1-\frac{\delta}{k}
$$

To verify H5, we shall set $\delta / k \leq c / l N$, which is verified for all l for $\delta \leq c k / N^{2}$. Setting this condition on δ along with the condition $\epsilon<1$ and $c<1 / 12$ concludes the verification of the assumptions of Theorem 11 of [1]. In turn, applying this result concludes the proof.

6 BINARY EVOLUTION ADDITIONAL RESULTS ON ONEMAX AND LEADINGONES

Learning curves for binary evolution under posterior Gaussian noise for the Onemax and Leadingones tasks with vector size $N=10$. Recall that noise samples are added to the true individual's fitness each time a fitness is sampled.

Table 1. Results for OneMax and LeadingOnes under posterior Gaussian noise.

7 NEUROEVOLUTION ADDITIONAL RESULTS ON ROBOTICS TASKS

Table 2. Training fitness for CartPole neuroevolution under posterior uniform noise.

Table 3. Training fitness for Асвовот neuroevolution under posterior uniform noise.

Table 4. Training fitness for Pendulum neuroevolution under posterior uniform noise.

REFERENCES

[1] Christian Gießen and Timo Kötzing. 2016. Robustness of Populations in Stochastic Environments. Algorithmica 75, 3 (2016), 462-489.
[2] Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. 2012. PAC Subset Selection in Stochastic Multi-armed Bandits. In Proceedings of the 29th International Conference on Machine Learning (ICML 2012), Vol. 12. 655-662.

