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1 NOTATIONS
We recall here the definition of the different sets we used in the paper and introduce some more for the purpose
of the proofs.

Consider generation 𝑔, while applying LUCIE with parameters 𝜇, 𝜆, 𝜖 , 𝛿 . All the sets described below are
illustrated in Figure A.1 and correspond to the same notations as [2]. We write Top𝑔 the set of the 𝜇 individuals
with highest expected fitness, and, Bot𝑔 the 𝜆 remaining individuals: For 𝜖 ∈ [0, 1], we define Good𝑔, the set of
(𝜖, 𝜇)-optimal individual, and Bad𝑔, as

Good𝑔 def
=

{
𝑖 ∈ Ind𝑔, 𝑓𝑖 ≥ min

𝑗∈Top𝑔
𝑓𝑗 − 𝜖

}
Bad𝑔 def

= Ind𝑔 \ Good𝑔

Theobjective of elitism is to be able to return 𝜇 individuals in Good𝑔. Obviously, the algorithm is unaware of what
individuals are in Good𝑔 or Bad𝑔. Instead, it maintains the sets High𝑔,𝑡 and Low𝑔,𝑡 , respectively containing the
believed best 𝜇 individual and the remainder. This ordering is performed based on the empirical fitness. Further,
we define 𝑐 as the mean between the fitness of the “worst” individual in Top𝑔 and the fitness of the “best”
individual in Bot𝑔:

𝑐
def
=

1
2

(
min

𝑖∈Top𝑔
𝑓𝑖 + max

𝑖∈Bot𝑔
𝑓𝑖

)
. (A.1)
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Fig. A.1. Illustration of the different sets for 𝜇 = 2, 𝜆 = 4. The circle markers represent true fitness of individuals while the
triangles, diamonds, stars and ellipses represent empirical fitnessmeans. Additionally, those empirical means are surrounded
by confidence intervals.

Based on 𝑐 , we can define the sets Above𝑔,𝑡 , Below𝑔,𝑡 , and, Middle𝑔,𝑡 as follows:

Above𝑔,𝑡 def
=

{
𝑖 ∈ Ind𝑔, 𝑓 𝑔,𝑡𝑖 − 𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
≥ 𝑐

}
, (A.2)

Below𝑔,𝑡 def
=

{
𝑖 ∈ Ind𝑔, 𝑓 𝑔,𝑡𝑖 + 𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
≤ 𝑐

}
,

Middle𝑔,𝑡 def
= Ind𝑔 \

(
Above𝑔,𝑡 ∪ Below𝑔,𝑡 ) .

As 𝑐 separates the fitness of individuals in Top𝑔 from the fitness of individuals in Bot𝑔, we wish that individuals
in Above𝑔,𝑡 (respectively in Below𝑔,𝑡 ) and Top𝑔 (respectively in Bot𝑔𝑡 ) are the same. We call CRoss𝑔,𝑡𝑖 the event
that this is not the case for individual 𝑖 ∈ Ind𝑔, and CRoss𝑔,𝑡 the event that CRoss𝑔,𝑡𝑖 is true for at least one
individual. Formally,

CRoss𝑔,𝑡𝑖
def
=

{
𝑖 ∈ Below𝑔,𝑡 if 𝑖 ∈ Top𝑔,
𝑖 ∈ Above𝑔,𝑡 if 𝑖 ∈ Bot𝑔 .

CRoss𝑔,𝑡 def
= ∃𝑖 ∈ Ind𝑔, CRoss𝑔,𝑡𝑖 .

Additionally, we define the event that an individual is “needy”, meaning that it belongs to the Middle𝑔,𝑡 set, and
that its confidence bound is larger than 𝜖/2:

Needy𝑔,𝑡𝑖
def
=

(
𝑖 ∈ Middle𝑔,𝑡

)
∧

(
𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
>

𝜖

2

)
.

Finally, we define the event of termination at step 𝑡 as true when the termination criterion of Equation 2 has
been met during step 𝑡 or before:

TeRm𝑔,𝑡 def
= ∃𝑡 ′ ≤ 𝑡, 𝑓

𝑔,𝑡 ′

𝑙𝑡 ′
+ 𝛽

(
𝑢
𝑔,𝑡 ′

𝑙𝑡 ′
, 𝑡 ′

)
< 𝑓

𝑔,𝑡 ′

ℎ𝑡 ′
− 𝛽

(
𝑢
𝑔,𝑡 ′

ℎ𝑡 ′
, 𝑡 ′

)
+ 𝜖,

where the sampling candidates ℎ𝑡 and 𝑙𝑡 are defined according to Equation 1.

2 PROOF OF THEOREM 4.1
Claim: Let 𝑔 be the current generation and 𝛽 : N2 → R+ a function such that

𝑛∑
𝑖=1

∞∑
𝑡=1

∞∑
𝑢=1

exp
(
−2𝑢𝛽 (𝑢, 𝑡)2

)
≤ 𝛿,
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if LUCIE terminates (Equation 2), the probability of returning a non-(𝜖, 𝜇)-optimal individual is at most 𝛿 , with
0 < 𝛿 ≤ 0.5.

PRoof. The proof of this result differs from the one of Theorem 1 of [2] in that the number of samples of the
fitness of an individual can be larger than the number of steps of the current generations. Indeed, as samples are
kept between generations, this number can get arbitrarily large. Let us write 𝐹𝑔 the event of failing, i.e., reaching
the termination criterion of Equation 2 and returning a non-(𝜖, 𝜇)-optimal individual, during generation 𝑔. 𝐹𝑔𝑡
the event of failing during generation 𝑔 at step 𝑡 . We are interested in bounding P (𝐹𝑔). Applying the union
bound, we have that

P (𝐹𝑔) = P
( ∞⋃
𝑡=1

𝐹
𝑔
𝑡

)
≤

∞∑
𝑡=1

P
(
𝐹
𝑔
𝑡

)
. (A.3)

Let us upper-bound the probability of 𝐹𝑔𝑡 . At step 𝑡 , we define the event that an individual 𝑖 ∈ Ind𝑔 is well-
behaved if its empirical fitness is larger (respectively lesser) than its true fitness minus (respectively plus) 𝛽 (𝑢, 𝑡)
if 𝑖 ∈ Top𝑔 (respectively 𝑖 ∈ Bot𝑔):

𝑊𝐵
𝑔,𝑡
𝑖 (𝑢) def

=

{
𝑓
𝑔,𝑡
𝑖 ≥ 𝑓𝑖 − 𝛽 (𝑢, 𝑡) if 𝑖 ∈ Top𝑔, and,
𝑓
𝑔,𝑡
𝑖 ≤ 𝑓𝑖 + 𝛽 (𝑢, 𝑡) if 𝑖 ∈ Bot𝑔 .

(A.4)

Intuitively, a well-behaved individual is one whose estimated empirical fitness would yield a correct guess of
belonging to Top𝑔 or Bot𝑔. Let us show that the event 𝐹𝑔𝑡 implies the event

(
∃𝑖 ∈ Ind𝑔,¬𝑊𝐵

𝑔,𝑡
𝑖 (𝑢𝑔,𝑡𝑖 )

)
. In plain

words, if LUCIE fails at step 𝑡 of generation 𝑔, then, there necessarily exists a non well-behaved individual.
Suppose that 𝐹𝑔𝑡 is true. This means an individual 𝑖 ∈ Bad𝑔 has been recommended, i.e., 𝑖 ∈ High𝑔,𝑡 . Necessarily,
an (𝜖, 𝜇)-optimal individual 𝑗 ∈ Good𝑔 has not been recommended, i.e., 𝑗 ∈ Low𝑔,𝑡 . Now, let us suppose that 𝑖 is
well-behaved, i.e.,

𝑓
𝑔,𝑡
𝑖 ≤ 𝑓𝑖 + 𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
.

Since 𝑖 ∈ High𝑔,𝑡 and 𝑗 ∈ Low𝑔,𝑡 , and the stopping criterion (Equation 2) has been met, we have that

𝑓
𝑔,𝑡
𝑗 + 𝛽

(
𝑢
𝑔,𝑡
𝑗 , 𝑡

)
≤ 𝑓

𝑔,𝑡
𝑖 − 𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
+ 𝜖.

Since 𝑖 ∈ Bad𝑔 and 𝑗 ∈ Good𝑔, we have that
𝑓𝑖 < 𝑓𝑗 − 𝜖.

Combining the three previous inequalities, we get that

𝑓𝑗 > 𝑓𝑖 + 𝜖

> 𝑓
𝑔,𝑡
𝑖 − 𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
+ 𝜖

> 𝑓
𝑔,𝑡
𝑗 + 𝛽

(
𝑢
𝑔,𝑡
𝑗 , 𝑡

)
,

which implies that 𝑗 is not well-behaved. As a conclusion, either 𝑖 or 𝑗 is not well-behaved, thus:

𝐹
𝑔
𝑡 =⇒

(
∃𝑖 ∈ Ind𝑔,¬𝑊𝐵

𝑔,𝑡
𝑖 (𝑢𝑔,𝑡𝑖 )

)
. (A.5)
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Note that the random variable𝑢𝑔,𝑡𝑖 is greater than 1, regardless of the sampling strategyS, as all individuals must
be sampled at least once. We inject the previous result in Equation A.3:

P (𝐹𝑔) ≤
∞∑
𝑡=1

P
(
𝐹
𝑔
𝑡

)
(from A.3)

≤
∞∑
𝑡=1

P
(
∃𝑖 ∈ Ind𝑔,¬𝑊𝐵

𝑔,𝑡
𝑖 (𝑢𝑔,𝑡𝑖 )

)
(from A.5)

≤
∞∑
𝑡=1

𝑛∑
𝑗=1

P
(
¬𝑊𝐵

𝑔,𝑡
𝑗 (𝑢𝑔,𝑡𝑗 )

)
(union bound on 𝑗 )

≤
∞∑
𝑡=1

𝑛∑
𝑗=1

∞∑
𝑢=1

P
(
¬𝑊𝐵

𝑔,𝑡
𝑗 (𝑢)

)
(union bound on 𝑢)

≤
∞∑
𝑡=1

𝑛∑
𝑗=1

∞∑
𝑢=1

exp
(
−2𝑢𝛽 (𝑢, 𝑡)2

)
. (Hoeffding’s bound)

More precisely, about the use of the Hoeffding’s bound in the last step, the probability of an individual not being
well-behaved is the probability that its empirical fitness deviates from its true fitness by at least 𝛽 (𝑢, 𝑡). By
symmetry between the two cases where the individual belongs to Top𝑔 or Bot𝑔, the same one-sided Hoeffding’s
bound applies. Finally, choosing 𝛽 such that

𝑛∑
𝑖=1

∞∑
𝑡=1

∞∑
𝑢=1

exp
(
−2𝑢𝛽 (𝑢, 𝑡)2

)
≤ 𝛿,

implies P (𝐹𝑔) ≤ 𝛿 , which concludes the proof. □

3 PROOF OF THEOREM 4.2

Claim: At generation 𝑔, the expected sample complexity of LUCIE is O
((
𝐻𝑔, 𝜖2 ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾

)
, with 𝛾 a constant

value such that 0 < 𝛾 < 0.57.
The proof of this result shares a similar reasoning as the one of Theorem 6 of [2]. The main differences are

brought by the fact that we here assume that previous bandit problems have been solved during former genera-
tions and thus, at the initialization of the new problem (i.e., current generation), some arms (or individuals) may
already have been sampled.
We first introduce six Lemmas. To ease the comprehension, we encourage the reader to directly skip to the

proof of the main theorem (page 14), which points back to the intermediate lemmas.

Lemma 3.1. Consider step 𝑡 of generation 𝑔. By applying LUCIE with 𝛽 defined in Equation 4,

P
(
CRoss𝑔,𝑡

)
≤ 𝛿𝜁 (2)

𝑘𝑡4
,

where 𝜁 is the Riemann zeta function.

PRoof. Without loss of generality, let 𝑖 be an individual in Top𝑔. By definition, at step 𝑡 , with 𝑐 defined as
the mean between the fitness of the “worst” individual in Top𝑔 and the fitness of the “best” individual in Bot𝑔

4



LUCIE: An Evaluation and Selection Method for Stochastic Problems GECCO ’22, July 9–13, 2022, Boston, MA, USA

(Equation A.1),

P
(
CRoss𝑔,𝑡𝑖

)
= P

(
𝑓
𝑔,𝑡
𝑖 + 𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
≤ 𝑐

)
= P

(
𝑓
𝑔,𝑡
𝑖 ≤ 𝑓𝑖 −

(
𝑓𝑖 + 𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
− 𝑐

))
≤

∞∑
𝑢=1

P
(
𝑓
𝑔,𝑡
𝑖 ≤ 𝑓𝑖 − (𝑓𝑖 + 𝛽 (𝑢, 𝑡) − 𝑐)

)
(union bound on 𝑢)

≤
∞∑
𝑢=1

exp
(
−2𝑢 (𝑓𝑖 + 𝛽 (𝑢, 𝑡) − 𝑐)2

)
(Hoeffding’s bound)

≤
∞∑
𝑢=1

exp
(
−2𝑢 (𝛽 (𝑢, 𝑡))2

)
(as 𝑓𝑖 − 𝑐 ≥ 0)

≤
∞∑
𝑢=1

𝛿

𝑛𝑘𝑡4𝑢2

≤ 𝛿𝜁 (2)
𝑛𝑘𝑡4

The same applies for 𝑖 ∈ Bot𝑔. The remainder of the proof follows naturally by applying the union bound over
all individuals.

P
(
CRoss𝑔,𝑡

)
= P

(
𝑛⋃
𝑖=1

CRoss𝑔,𝑡𝑖

)
≤

𝑛∑
𝑖=1

P
(
CRoss𝑔,𝑡𝑖

)
≤

𝑛∑
𝑖=1

𝛿𝜁 (2)
𝑛𝑘𝑡4

≤ 𝛿𝜁 (2)
𝑘𝑡4

□

Lemma 3.2. Consider step 𝑡 of generation 𝑔. We define the number of samples 𝑢∗
𝑖 (𝑡) ∈ N as

𝑢∗
𝑖 (𝑡)

def
=


(

2[
Δ𝑖 ∧ 𝜖

2

]2 ln (
𝑛𝑘𝑡4

𝛿

)) 1
𝛾 ,

with 𝛾 any constant value verifying 0 < 𝛾 < 0.57. Then we have that ∀𝑢 ≥ 𝑢∗
𝑖 (𝑡), 𝛽 (𝑢, 𝑡) ≤ 1

2

[
Δ𝑖 ∧ 𝜖

2

]
.

PRoof. The key argument of this proof consists in upper-bounding 𝛽 by a looser bound 𝛽 that we define as

𝛽 (𝑢, 𝑡) def
=

√
1
2𝑢𝛾

ln

(
𝑛𝑘𝑡4

𝛿

)
.

We first prove that 𝛽 is indeed upper-bounded by 𝛽 for any 𝑢, then we prove that when 𝑢 ≥ 𝑢∗
𝑖 (𝑡), 𝛽 is upper-

bounded by 1
2

[
Δ𝑖 ∧ 𝜖

2

]
.

5
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Upper-bound of 𝛽 by 𝛽 . Consider 𝑢, 𝑡 ∈ N,

𝛽 (𝑢, 𝑡) ≤ 𝛽 (𝑢, 𝑡) ⇐⇒

√
1
2𝑢

ln

(
𝑛𝑘𝑡4𝑢2

𝛿

)
≤

√
1
2𝑢𝛾

ln

(
𝑛𝑘𝑡4

𝛿

)
⇐⇒

ln
(
𝑛𝑘𝑡4𝑢2

𝛿

)
ln

(
𝑛𝑘𝑡4

𝛿

) ≤ 𝑢1−𝛾

⇐⇒ ln
©­­«
ln

(
𝑛𝑘𝑡4𝑢2

𝛿

)
ln

(
𝑛𝑘𝑡4

𝛿

) ª®®¬ ≤ (1 − 𝛾) ln (𝑢)

⇐⇒ 𝛾 ≤ 1 − 1
ln (𝑢) ln

©­­«
ln

(
𝑛𝑘𝑡4𝑢2

𝛿

)
ln

(
𝑛𝑘𝑡4

𝛿

) ª®®¬
⇐⇒ 𝛾 ≤ 1 − 1

ln (𝑢) ln
©­­«1 +

2 ln (𝑢)
ln

(
𝑛𝑘𝑡4

𝛿

) ª®®¬ (A.6)

We now show that the last statement is true for any value of 𝑡,𝑢 and for any 𝛾 such that 0 < 𝛾 < 0.57. First,
remark that, as 𝑥 ↦→ ln (1 + 𝑥) is bounded by the identity function on R+, the right hand side of the previous
inequality is lower-bounded by

1 − 2

ln
(
𝑛𝑘𝑡4

𝛿

) .
This quantity is itself lower-bounded by its minimum value, reached with the minimum values of 𝑛 = 2, 𝑡 = 2,
and the maximum value of 𝛿 = 0.5. Indeed, the population size cannot be strictly less than 2 by assumption, the
number of steps 𝑡 is at least equal to this number as all individuals are sampled at the beginning of a generation.
By replacing the values, we get

1 − 2

ln
(
𝑛𝑘𝑡4

𝛿

) ≥ 1 − 2

ln
(
2×𝜋6×24
0.5×540

) ≈ 0.577.

Overall, as 𝛾 < 0.57, we have for any value of 𝑡 and 𝑢 that

𝛾 < 1 − 2

ln
(
𝑛𝑘𝑡4

𝛿

) ≤ 1 − 1
ln (𝑢) ln

©­­«1 +
2 ln (𝑢)
ln

(
𝑛𝑘𝑡4

𝛿

) ª®®¬ ,
which validates the statement made in Equation A.6. This statement is equivalent to 𝛽 (𝑢, 𝑡) ≤ 𝛽 (𝑢, 𝑡) for any
values of 𝑢, 𝑡 , which validates that 𝛽 is an upper-bound on 𝛽 .

6
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Upper-bound of 𝛽 by 1
2

[
Δ𝑖 ∧ 𝜖

2

]
. The result is straightforward by showing that 𝛽 is upper-bounded by

1
2

[
Δ𝑖 ∧ 𝜖

2

]
if 𝑢 ≥ 𝑢∗

𝑖 (𝑡).

𝛽 (𝑢, 𝑡) ≤ 1
2

[
Δ𝑖 ∧

𝜖

2

]
⇐⇒

√
1
2𝑢𝛾

ln

(
𝑛𝑘𝑡4

𝛿

)
≤ 1

2

[
Δ𝑖 ∧

𝜖

2

]
⇐⇒ 1

𝑢𝛾
ln

(
𝑛𝑘𝑡4

𝛿

)
≤ 1

2

[
Δ𝑖 ∧

𝜖

2

]2
⇐⇒ 𝑢 ≥

(
2[

Δ𝑖 ∧ 𝜖
2

]2 ln (
𝑛𝑘𝑡4

𝛿

)) 1
𝛾

⇐⇒ 𝑢 ≥ 𝑢∗
𝑖 (𝑡).

The bound on 𝛽 follows immediately with the fact that 𝛽 is an upper-bound on 𝛽 . □

Lemma 3.3. Consider step 𝑡 of generation 𝑔, for any constant value 𝐶1 > 3
2
𝛾 , we have that

P
(
∃𝑖 ∈ Ind𝑔,

(
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧ Needy𝑔,𝑡𝑖

)
≤ 𝐶2

𝛿𝐻𝑔, 𝜖2

𝑛𝑘𝑡4
,

with 𝐶2 > 0 another constant value.

PRoof. We distinguish between the two cases of the relative position ofΔ𝑖 and 𝜖
2 .Wewill use the setMiddle𝑔,𝑡 ,

defined in Equation A.2, corresponding to the individuals whose confidence interval comprises the value 𝑐 (Equa-
tion A.1). If Δ𝑖 ≤ 𝜖

2 , the result follows easily, consider 𝑖 ∈ Ind𝑔:

P
((
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧ Needy𝑔,𝑡𝑖

��� Δ𝑖 ≤
𝜖

2

)
= P

((
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧

(
𝑖 ∈ Middle𝑔,𝑡

)
∧

(
𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
>

𝜖

2

))
≤ P

((
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧

(
𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
≥ 𝜖

2

))
≤

∞∑
𝑢=𝐶1𝑢∗

𝑖 (𝑡 )+1
P

(
𝛽 (𝑢, 𝑡) ≥ 𝜖

2

)
.

≤ 0

The last inequality comes from the fact that 𝐶1𝑢
∗
𝑖 (𝑡) > 𝑢∗

𝑖 (𝑡) and we know from Lemma 3.2 that 𝛽 (𝑢, 𝑡) <[
Δ𝑖 ∧ 𝜖

2

]
= 𝜖

2 for any 𝑢 ≥ 𝑢∗
𝑖 (𝑡). Hence, P

(
𝛽 (𝑢, 𝑡) ≥ 𝜖

2

)
= 0, for such a value of 𝑢, which proves the first case.

7
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Consider now the less trivial case where
[
Δ𝑖 ∧ 𝜖

2

]
= Δ𝑖 . Without loss of generality, consider 𝑖 ∈ Top𝑔.

P
((
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧ Needy𝑔,𝑡𝑖

��� Δ𝑖 >
𝜖

2

)
= P

((
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧

(
𝑖 ∈ Middle𝑔,𝑡

)
∧

(
𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
>

𝜖

2

))
≤ P

((
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧

(
𝑖 ∈ Middle𝑔,𝑡

) )
≤ P

((
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧

(
𝑓
𝑔,𝑡
𝑖 − 𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
≤ 𝑐

))
≤

∞∑
𝑢=𝐶1𝑢∗

𝑖 (𝑡 )+1
P

(
𝑓
𝑔,𝑡
𝑖 − 𝛽 (𝑢, 𝑡) ≤ 𝑐

)
≤

∞∑
𝑢=𝐶1𝑢∗

𝑖 (𝑡 )+1
P

(
𝑓
𝑔,𝑡
𝑖 ≤ 𝑓𝑖 − (𝑓𝑖 − 𝑐 − 𝛽 (𝑢, 𝑡))

)
≤

∞∑
𝑢=𝐶1𝑢∗

𝑖 (𝑡 )+1
exp

(
−2𝑢 (𝑓𝑖 − 𝑐 − 𝛽 (𝑢, 𝑡))2

)
≤

∞∑
𝑢=𝐶1𝑢∗

𝑖 (𝑡 )+1
exp

(
−2𝑢

(
𝑓𝑖 − 𝑐 − 𝛽 (𝑢, 𝑡)

)2)
The last inequality comes from the fact that 𝛽 (𝑢, 𝑡) ≤ 𝛽 (𝑢, 𝑡) ≤ Δ𝑖

2 on one hand, and, Δ𝑖
2 ≤ 𝑓𝑖 − 𝑐 ≤ Δ𝑖 , on the

other hand (can be shown by using the definition of Δ𝑖 and the triangle inequality). This allows writing that(
𝑓𝑖 − 𝑐 − 𝛽 (𝑢, 𝑡)

)2 ≤ (𝑓𝑖 − 𝑐 − 𝛽 (𝑢, 𝑡))2 ,

hence we can upper-bound the right hand side by replacing 𝛽 by 𝛽 . Developing the definition of 𝛽 , we get the
following:

P
((
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧ Needy𝑔,𝑡𝑖

��� Δ𝑖 >
𝜖

2

)
≤

∞∑
𝑢=𝐶1𝑢∗

𝑖 (𝑡 )+1
exp

©­«−2𝑢 ©­«𝑓𝑖 − 𝑐 −

√
1
2𝑢𝛾

ln

(
𝑛𝑘𝑡4

𝛿

)ª®¬
2ª®¬

≤
∞∑

𝑢=𝐶1𝑢∗
𝑖 (𝑡 )+1

exp
©­«−2𝑢Δ2

𝑖

(
𝑓𝑖 − 𝑐

Δ𝑖
− 1

𝑢
𝛾
2

√
1

2Δ2
𝑖

ln

(
𝑛𝑘𝑡4

𝛿

))2ª®¬
≤

∞∑
𝑢=𝐶1𝑢∗

𝑖 (𝑡 )+1
exp

©­«−2𝑢Δ2
𝑖

(
𝑓𝑖 − 𝑐

Δ𝑖
− 1
2

(
𝑢∗
𝑖 (𝑡)
𝑢

) 𝛾
2

)2ª®¬ . (A.7)

In this last expression, we have that 𝑢 > 𝐶1𝑢
∗
𝑖 (𝑡), which implies, with 𝐶1 > 1, that

1
2

(
𝑢∗
𝑖 (𝑡)
𝑢

) 𝛾
2

<
1
2

1

𝐶
𝛾
2
1

<
1
2
.

At the same time, we have by definition of Δ𝑖 that

1
2
≤ 𝑓𝑖 − 𝑐

Δ𝑖
.

8
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Combining both inequalities, we get that

(
𝑓𝑖 − 𝑐

Δ𝑖
− 1
2

(
𝑢∗
𝑖 (𝑡)
𝑢

) 𝛾
2

)
≥ ©­«12 − 1

2
1

𝐶
𝛾
2
1

ª®¬
2

=⇒ exp

(
−2𝑢Δ2

𝑖

(
𝑓𝑖 − 𝑐

Δ𝑖
− 1
2

(
𝑢∗
𝑖 (𝑡)
𝑢

) 𝛾
2

))
≤ exp

©­«−2𝑢Δ2
𝑖
©­«12 − 1

2
1

𝐶
𝛾
2
1

ª®¬
2ª®¬

We write 𝐶 def
=

(
1
2 −

1
2

1

𝐶
𝛾
2
1

)2
and inject this result in Equation A.7:

P
((
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧ Needy𝑔,𝑡𝑖

��� Δ𝑖 >
𝜖

2

)
≤

∞∑
𝑢=𝐶1𝑢∗

𝑖 (𝑡 )+1
exp

(
−2𝐶𝑢Δ2

𝑖

)
.

Then, by remarking that the function 𝑔 : 𝑢 ↦→ exp
(
−2𝐶𝑢Δ2

𝑖

)
is strictly decreasing, one can upper-bound the

sum of 𝑢 ↦→ 𝑔(𝑢) by the integral of 𝑢 ↦→ 𝑔(𝑢 − 1), which implies

P
((
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧ Needy𝑔,𝑡𝑖

��� Δ𝑖 >
𝜖

2

)
≤

∫ ∞

𝐶1𝑢∗
𝑖 (𝑡 )

exp
(
−2𝐶𝑢Δ2

𝑖

)
𝑑𝑢

≤ 1

2𝐶Δ2
𝑖

exp
(
−2Δ2

𝑖𝐶1𝐶𝑢
∗
𝑖 (𝑡)

)
≤ 1

2𝐶Δ2
𝑖

exp

(
−2Δ2

𝑖𝐶1𝐶

(
2

Δ2
𝑖

ln

(
𝑛𝑘𝑡4

𝛿

)) 1
𝛾

)
≤ 1

2𝐶Δ2
𝑖

exp

(
−2Δ2

𝑖𝐶1𝐶
2

Δ2
𝑖

ln

(
𝑛𝑘𝑡4

𝛿

))
(A.8)

≤ 1

2𝐶Δ2
𝑖

exp

(
−4𝐶1𝐶 ln

(
𝑛𝑘𝑡4

𝛿

))
≤ 1

2𝐶Δ2
𝑖

exp

(
− ln

(
𝑛𝑘𝑡4

𝛿

))
(A.9)

≤ 𝛿

2𝐶Δ2
𝑖𝑛𝑘𝑡

4
.

Equation A.8 comes from the fact that 𝛾 < 1, which implies 𝑥
1
𝛾 ≥ 𝑥 for any 𝑥 > 1. To demonstrate Equation A.9,

one can show that 4𝐶1𝐶 > 1 by using the fact that we set 𝐶1 > 3
2
𝛾 .

9
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Finally, to prove the result, we use the union bound over all the individuals:

P
(
∃𝑖 ∈ Ind𝑔,

(
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧ Needy𝑔,𝑡𝑖

)
≤

∑
𝑖∈Ind𝑔

P
((
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧ Needy𝑔,𝑡𝑖

)
≤

∑
𝑖∈Ind𝑔

P
((
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧ Needy𝑔,𝑡𝑖

��� Δ𝑖 ≤
𝜖

2

)
+

P
((
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧ Needy𝑔,𝑡𝑖

��� Δ𝑖 >
𝜖

2

)
≤ 0 +

∑
𝑖∈Ind𝑔
Δ𝑖>

𝜖
2

𝛿

2𝐶Δ2
𝑖𝑛𝑘𝑡

4

≤ 𝛿

2𝐶𝑛𝑘𝑡4

𝑛∑
𝑖=1

1

Δ2
𝑖

≤ 𝛿𝐻𝑔, 𝜖2

2𝐶𝑛𝑘𝑡4
,

which concludes the proof by defining the constant 𝐶2
def
= 1

2𝐶̃
> 0. □

We introduce a third lemma, borrowed from [2] (Lemma 2), showing that if the algorithm does not terminate
and CRoss𝑔,𝑡 is not verified, then ℎ

𝑔,𝑡
∗ or 𝑙𝑔,𝑡∗ is necessarily needy. As the assumptions are the same as [2], we

refer the reader to this paper for a formal proof. This result suggests that both individuals ℎ𝑔,𝑡∗ and 𝑙𝑔,𝑡∗ are good
candidates for sampling, in order to reach the termination criterion of Equation 2.

Lemma 3.4. (Lemma 2 of [2]) At any step 𝑡 of generation 𝑔, we have that

¬CRoss𝑔,𝑡 ∧ ¬TeRm𝑔,𝑡 =⇒ Needy𝑔,𝑡
ℎ
𝑔,𝑡
∗

∨ Needy𝑔,𝑡
𝑙
𝑔,𝑡
∗
.

The following lemma gives a lower-bound on the number of steps 𝑡 after which 2+∑
𝑖∈Ind𝑔 32𝑢

∗
𝑖 (𝑡) ≤ 𝑡 . It will

be used in Lemma 3.6 to indicate the number of steps required for termination with a bounded probability.

Lemma 3.5. At generation 𝑔, there exists a constant 𝐶3 > 0 such that,

𝑡 ≥ 𝐶3

(
𝐻𝑔, 𝜖2 ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾

=⇒ 2 + 2
∑

𝑖∈Ind𝑔
𝐶1𝑢

∗
𝑖 (𝑡) < 𝑡,

with 𝐶1 > 3
2
𝛾 defined in Lemma 3.3.

10
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PRoof. We develop the expression 2 + 2
∑

𝑖∈Ind𝑔 𝐶1𝑢
∗
𝑖 (𝑡) using the definition of 𝑢∗

𝑖 (𝑡) and derive an upper-
bound:

2 + 2
∑

𝑖∈Ind𝑔
𝐶1𝑢

∗
𝑖 (𝑡) = 2 + 2

∑
𝑖∈Ind𝑔

𝐶1


(

2[
Δ𝑖 ∧ 𝜖

2

]2 ln (
𝑛𝑘𝑡4

𝛿

)) 1
𝛾  (from Lemma 3.2)

≤ 2 + 2𝐶1𝑛 + 2𝐶1

∑
𝑖∈Ind𝑔

(
2[

Δ𝑖 ∧ 𝜖
2

]2 ln (
𝑛𝑘𝑡4

𝛿

)) 1
𝛾

(as ⌈𝑥⌉ ≤ 1 + 𝑥 )

≤ 2 + 2𝐶1𝑛 + 21+
1
𝛾𝐶1

(
ln

(
𝑛𝑘𝑡4

𝛿

)) 1
𝛾 ∑
𝑖∈Ind𝑔

(
1[

Δ𝑖 ∧ 𝜖
2

]2 ) 1
𝛾

≤ 2 + 2𝐶1𝑛 + 21+
1
𝛾𝐶1

(
ln (𝑘) + ln

(𝑛
𝛿

)
+ 4 ln (𝑡)

) 1
𝛾

(
𝐻𝑔, 𝜖2

) 1
𝛾
,

where we used the fact that
∑

𝑖∈Ind𝑔

(
1

[Δ𝑖∧ 𝜖
2 ]2

) 1
𝛾

≤
(∑

𝑖∈Ind𝑔
1

[Δ𝑖∧ 𝜖
2 ]2

) 1
𝛾

=
(
𝐻𝑔, 𝜖2

) 1
𝛾 as 1

𝛾 > 1 and for all 𝑖 ∈ Ind𝑔,
1

[Δ𝑖∧ 𝜖
2 ]2

≥ 1. To simplify the notation, let us write 𝜑 (𝑡) the right-hand side of the last inequality:

𝜑 (𝑡) def
= 2 + 2𝐶1𝑛 + 21+

1
𝛾𝐶1

(
ln (𝑘) + ln

(𝑛
𝛿

)
+ 4 ln (𝑡)

) 1
𝛾

(
𝐻𝑔, 𝜖2

) 1
𝛾
,

and let𝑇 = 𝐶3

(
𝐻𝑔, 𝜖2 ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾 ,𝐶3 > 0. We now prove that there indeed exists𝐶3 > 0 such that 𝜑 (𝑇 ) ≤ 𝑇 . The

proof will then follow easily by remarking that 𝑡 ↦→ 𝜑 (𝑡) is a polylogarithmic function and is thus dominated
by the identity function after reaching a certain constant value of 𝑡 . Replacing 𝑇 , we have:

𝜑 (𝑇 ) = 2 + 2𝐶1𝑛 + 21+
1
𝛾𝐶1

(
𝐻𝑔, 𝜖2

) 1
𝛾

(
ln (𝑘) + ln

(𝑛
𝛿

)
+ 4 ln (𝐶3) +

4
𝛾
ln

(
𝐻𝑔, 𝜖2

)
+ 4
𝛾
ln

(
ln

(
𝐻𝑔, 𝜖2

𝛿

))) 1
𝛾

≤ 2 + 2𝐶1𝑛 + 21+
1
𝛾𝐶1

(
𝐻𝑔, 𝜖2

) 1
𝛾

(
ln (𝑘) + ln

(𝑛
𝛿

)
+ 4 ln (𝐶3) +

4
𝛾
ln

(
𝐻𝑔, 𝜖2

)
+ 4
𝛾
ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾

≤ 21+
1
𝛾𝐶1

(
𝐻𝑔, 𝜖2

) 1
𝛾

(
3 + ln (𝑘) + ln

(𝑛
𝛿

)
+ 4 ln (𝐶3) +

4
𝛾
ln

(
𝐻𝑔, 𝜖2

)
+ 4
𝛾
ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾

, (A.10)

Where we used the three facts that 𝑛 ≤ 𝐻𝑔, 𝜖2 ≤
(
𝐻𝑔, 𝜖2

) 1
𝛾 , 21+

1
𝛾𝐶1𝐻

𝑔, 𝜖2 > 1 and 𝑥 +𝑦
1
𝛾 < (𝑥 +𝑦)

1
𝛾 for any 𝑥,𝑦 ≥ 1.

Recall that

2 ≤ 𝑛 ≤ 𝐻𝑔, 𝜖2 ≤ 𝐻𝑔, 𝜖2

𝛿
.
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We use this fact to upper bound ln
(𝑛
𝛿

)
and ln

(
𝐻𝑔, 𝜖2

)
by ln

(
𝐻𝑔, 𝜖2

𝛿

)
in Equation A.10. We can in turn factorize

everything by ln
(
𝐻𝑔, 𝜖2

𝛿

)
, yielding

𝜑 (𝑇 ) ≤ 21+
1
𝛾𝐶1

(
𝐻𝑔, 𝜖2

) 1
𝛾

(
3 + ln (𝑘) + 1 + 4 ln (𝐶3) +

4
𝛾
+ 4
𝛾

) 1
𝛾

(
ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾

≤ 21+
1
𝛾𝐶1

(
4 + ln (𝑘) + 4 ln (𝐶3) +

8
𝛾

) 1
𝛾

(
𝐻𝑔, 𝜖2 ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾

We chose 𝐶3 such that 𝐶3 ≥ 21+
1
𝛾𝐶1

(
4 + ln (𝑘) + 4 ln (𝐶3) + 8

𝛾

) 1
𝛾 , which is always proven to exist as all polylog-

arithmic functions are dominated by any polynomial, particularly the identity function. For such a choice of𝐶3,
we thus have that

𝜑 (𝑇 ) ≤ 𝐶3

(
𝐻𝑔, 𝜖2 ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾

= 𝑇

Now, by remarking that 𝑡 ↦→ 𝜑 (𝑡) is a polylogarithmic function, specifically written in the form

𝜑 (𝑡) = 𝐴 ln (𝐵𝑡)
1
𝛾 +𝐶,

where 𝐴, 𝐵, and 𝐶 are positive constants, we have that it is 𝑜
(
(𝐵𝑡)𝜖

)
for any exponent 𝜖 > 0. Thus, for any

positive constant 𝜖 > 0, there exists a constant 𝑡0 such that 𝜑 (𝑡) ≤ 𝜖 (𝐵𝑡)𝜖 for any 𝑡 ≥ 𝑡0. By picking adequately
small values for having 𝜖 (𝐵𝑡)𝜖 ≤ 𝑡 , we thus have the guarantee that there exists a constant 𝑡0 such that 𝜑 (𝑡) < 𝑡
for any 𝑡 ≥ 𝑡0. We use this fact to chose 𝐶3 large enough for 𝑇 to be larger than 𝑡0. We thus have that 2 +
2
∑

𝑖∈Ind𝑔 𝐶1𝑢
∗
𝑖 (𝑡) < 𝑡 for any 𝑡 ≥ 𝑇 , which completes the proof. □

We now consider the probability of non termination after 𝑡 steps during generation 𝑔, and show that after a
certain threshold on 𝑡 , this probability is bounded by a decreasing value with 𝑡 .

Lemma 3.6. During generation 𝑔, for any 𝑡 ≥ 2𝐶3

(
𝐻𝑔, 𝜖2 ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾
(where 𝐶3 is defined in Lemma 3.5), the

probability that LUCIE has not terminated after 𝑡 steps is at most 𝐶4𝛿
𝑡2

, with 𝐶4 a strictly positive constant.

PRoof. Consider 𝑇 = 𝐶3

(
𝐻𝑔, 𝜖2 ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾 , and 𝐸1, 𝐸2 the events described in Lemma 3.1 and 3.3 for 𝑡 ∈

{𝑇, . . . , 2𝑇 − 1}, defined as

𝐸1
def
= ∃𝑡 ∈ {𝑇, . . . , 2𝑇 − 1} ,CRoss𝑔,𝑡 ,

𝐸2
def
= ∃𝑡 ∈ {𝑇, . . . , 2𝑇 − 1} , ∃𝑖 ∈ Ind𝑔,

(
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧ Needy𝑔,𝑡𝑖 .

We first demonstrate the following implication:

¬𝐸1 ∧ ¬𝐸2 =⇒ ∃𝑡 ≤ 2𝑇 − 1,TeRm𝑔,𝑡 (A.11)

Suppose for now that ¬𝐸1 ∧ ¬𝐸2. Let 𝑁non-term be the random variable of the number of steps during which
¬TeRm𝑔,𝑡 is true, for 𝑡 ∈ {1, . . . , 2𝑇 − 1}. Our goal is to show that, necessarily, 𝑁non-term < 2𝑇 − 1. This would
imply that there exists 𝑡 ≤ 2𝑇 − 1 such that TeRm𝑔,𝑡 . Recall that if TeRm𝑔,𝑡 is true, then for all 𝑡 ′ ≥ 𝑡 , TeRm𝑔,𝑡 ′ is
also true.

12
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We distinguish two cases. If TeRm𝑔,𝑇 is true, then we have 𝑁non-term ≤ 𝑇 < 2𝑇 − 1. Else, assume the stopping
criterion has not been reached at step𝑇 , i.e., ¬TeRm𝑔,𝑇 . Let 𝑁remain be the random variable of the number of steps
during which ¬TeRm𝑔,𝑡 for 𝑡 ∈ {𝑇, . . . , 2𝑇 − 1}, defined as:

𝑁remain =
2𝑇−1∑
𝑡=𝑇

1
(
¬TeRm𝑔,𝑡 )

Since ¬𝐸1 is true, then for all 𝑡 ∈ {𝑇, . . . , 2𝑇 − 1}, ¬CRoss𝑔,𝑡 is true. Consequently, we can write 𝑁remain as

𝑁remain =
2𝑇−1∑
𝑡=𝑇

1
(
¬TeRm𝑔,𝑡 ∧ ¬CRoss𝑔,𝑡

)
.

By Lemma 3.4, we have that ¬TeRm𝑔,𝑡 ∧ ¬CRoss𝑔,𝑡 =⇒ Needy𝑔,𝑡
ℎ
𝑔,𝑡
∗

∨ Needy𝑔,𝑡
𝑙
𝑔,𝑡
∗

for any 𝑡 ∈ N. Hence we can
upper-bound 𝑁remain by the number of times the sampling candidates are needy:

𝑁remain ≤
2𝑇−1∑
𝑡=𝑇

1
(
Needy𝑔,𝑡

ℎ
𝑔,𝑡
∗

∨ Needy𝑔,𝑡
𝑙
𝑔,𝑡
∗

)
≤

2𝑇−1∑
𝑡=𝑇

∑
𝑖∈Ind𝑔

1
((
𝑖 = ℎ

𝑔,𝑡
∗ ∨ 𝑖 = 𝑙

𝑔,𝑡
∗

)
∧ Needy𝑔,𝑡𝑖

)
. (A.12)

Since ¬𝐸2 is true, then for any individual 𝑖 ∈ Ind𝑔, either the event ¬Needy𝑔,𝑡𝑖 is true, either
(
𝑢
𝑔,𝑡
𝑖 ≤ 𝐶1𝑢

∗
𝑖 (𝑡)

)
:

¬𝐸2 ⇐⇒ ∀𝑡 ∈ {𝑇, . . . , 2𝑇 − 1} ,∀𝑖 ∈ Ind𝑔,
(
𝑢
𝑔,𝑡
𝑖 ≤ 𝐶1𝑢

∗
𝑖 (𝑡)

)
∨ ¬Needy𝑔,𝑡𝑖

⇐⇒ ∀𝑡 ∈ {𝑇, . . . , 2𝑇 − 1} ,∀𝑖 ∈ Ind𝑔,Needy𝑔,𝑡𝑖 =⇒ 𝑢
𝑔,𝑡
𝑖 ≤ 𝐶1𝑢

∗
𝑖 (𝑡).

Using this along with the fact that 𝑡 ↦→ 𝑢∗
𝑖 (𝑡) is an increasing function, we have that

𝑁remain ≤
2𝑇−1∑
𝑡=𝑇

∑
𝑖∈Ind𝑔

1
((
𝑖 = ℎ

𝑔,𝑡
∗ ∨ 𝑖 = 𝑙

𝑔,𝑡
∗

)
∧

(
𝑢
𝑔,𝑡
𝑖 ≤ 𝐶1𝑢

∗
𝑖 (𝑡)

))
(¬𝐸2)

≤
2𝑇−1∑
𝑡=𝑇

∑
𝑖∈Ind𝑔

1
((
𝑖 = ℎ

𝑔,𝑡
∗ ∨ 𝑖 = 𝑙

𝑔,𝑡
∗

)
∧

(
𝑢
𝑔,𝑡
𝑖 ≤ 𝐶1𝑢

∗
𝑖 (2𝑇 )

))
(𝑡 < 2𝑇 )

≤
∑

𝑖∈Ind𝑔

2𝑇−1∑
𝑡=𝑇

1
((
𝑖 = ℎ

𝑔,𝑡
∗ ∨ 𝑖 = 𝑙

𝑔,𝑡
∗

)
∧

(
𝑢
𝑔,𝑡
𝑖 ≤ 𝐶1𝑢

∗
𝑖 (2𝑇 )

))
≤

∑
𝑖∈Ind𝑔

𝐶1𝑢
∗
𝑖 (2𝑇 ).

The last step of this derivation comes from the fact that, at step 𝑡 , the number of times an individual is selected (i.e.,
𝑖 = ℎ

𝑔,𝑡
∗ ∨ 𝑖 = 𝑙

𝑔,𝑡
∗ ) and its number of samples is lesser than 𝐶1𝑢

∗
𝑖 (2𝑇 ) cannot exceed 𝐶1𝑢

∗
𝑖 (2𝑇 ). Indeed, each time

the individual is sampled, its number of samples is increased by 1, which, along with the event 𝑢𝑔,𝑡𝑖 ≤ 𝐶1𝑢
∗
𝑖 (2𝑇 )

cannot happen more than 𝐶1𝑢
∗
𝑖 (2𝑇 ) times. As 𝑇 = 𝐶3

(
𝐻𝑔, 𝜖2 ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾 , according to Lemma 3.5, we thus have

that
𝑁remain ≤

∑
𝑖∈Ind𝑔

𝐶1𝑢
∗
𝑖 (2𝑇 ) <

2𝑇 − 2
2

= 𝑇 − 1.

13
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Overall, we have in this second case that

𝑁non-term = 𝑇 + 𝑁remain < 2𝑇 − 1.

Thus, in any case, 𝑁non-term < 2𝑇 − 1, which concludes our proof of the implication described in Equation A.11.
Its counterpart is the following:

∀𝑡 ≤ 2𝑇 − 1,¬TeRm𝑔,𝑡 =⇒ 𝐸1 ∨ 𝐸2

Hence, the probability of verifying ¬TeRm𝑔,𝑡 for the first time after 2𝑇 steps is upper-bounded by the probability
of 𝐸1 ∨ 𝐸2, for which we can use Lemma 3.1 and Lemma 3.3 to find an upper-bound:

P (𝐸1 ∨ 𝐸2) ≤ P (𝐸1) + P (𝐸2)
≤ P

(
∃𝑡 ∈ {𝑇, . . . , 2𝑇 − 1} ,CRoss𝑔,𝑡

)
+ P

(
∃𝑡 ∈ {𝑇, . . . , 2𝑇 − 1} , ∃𝑖 ∈ Ind𝑔,

(
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧ Needy𝑔,𝑡𝑖

)
≤

2𝑇−1∑
𝑡=𝑇

P
(
CRoss𝑔,𝑡

)
+

2𝑇−1∑
𝑡=𝑇

P
(
∃𝑖 ∈ Ind𝑔,

(
𝑢
𝑔,𝑡
𝑖 > 𝐶1𝑢

∗
𝑖 (𝑡)

)
∧ Needy𝑔,𝑡𝑖

)
(union bound)

≤
2𝑇−1∑
𝑡=𝑇

𝛿𝜁 (2)
𝑘𝑡4

+𝐶2
𝛿𝐻𝑔, 𝜖2

𝑛𝑘𝑡4
(from Lemma 3.1 and Lemma 3.3)

≤
2𝑇−1∑
𝑡=𝑇

𝛿

𝑘𝑡4

(
𝜁 (2) +𝐶2

𝐻𝑔, 𝜖2

𝑛

)
≤

2𝑇−1∑
𝑡=𝑇

𝛿

𝑘𝑇 4

(
𝜁 (2) +𝐶2

𝐻𝑔, 𝜖2

𝑛

)
≤ 𝛿

𝑘𝑇 2

(
𝜁 (2)
𝑇

+ 𝐶2

𝑛

𝐻𝑔, 𝜖2

𝑇

)
≤ 𝐶4𝛿

𝑇 2 ,

where 𝐶4 is a positive constant. The existence of 𝐶4 comes from the fact that all quantities are upper-bounded
by positive constants. Namely, as 𝑛 ≥ 2 and 𝛿 ≤ 0.5, if we write𝑇min

def
= 𝐶3

(
2 ln

( 2
0.5

) ) 1
𝛾 the minimum value of𝑇 ,

we have that
𝜁 (2)
𝑇

≤ 𝜁 (2)
𝑇min

, 𝐶2

𝑛
≤ 𝐶2

2
, and, 𝐻𝑔, 𝜖2

𝑇
=

1

𝐶3

(
𝐻𝑔, 𝜖2

) 1
𝛾 −1 (

ln
(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾

≤ 1

𝐶3 (2)
1
𝛾 −1 (

ln
( 2
0.5

) ) 1
𝛾

.

The proof is concluded by remarking that this is true for any 𝑇 ≥ 2𝐶3

(
𝐻𝑔, 𝜖2 ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾 . □

Finally, Lemma 3.6 allows to demonstrate Theorem 4.2 as follows.

PRoof. Following Lemma 3.6, consider 𝑇 ∗ = 𝐶3

(
𝐻𝑔, 𝜖2 ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾 . At generation 𝑔, the sample complexity,

denoted by 𝑆𝐶 , is defined as the number of steps where the binary random variable ¬TeRm𝑔,𝑡 is true. As two
individuals are sampled at each step, we have that 𝑆𝐶 = 2

∑∞
𝑡=1 ¬TeRm𝑔,𝑡 . The result follows from taking the

14
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expectation and applying Lemma 3.6:

E (𝑆𝐶) = 2
∞∑
𝑡=1

E
(
¬TeRm𝑔,𝑡 )

= 2
∞∑
𝑡=1

0 × P
(
TeRm𝑔,𝑡 ) + 1 × P

(
¬TeRm𝑔,𝑡 )

= 2
𝑇 ∗∑
𝑡=1

P
(
¬TeRm𝑔,𝑡 ) + 2

∞∑
𝑡=𝑇 ∗+1

P
(
¬TeRm𝑔,𝑡 )

≤ 2𝑇 ∗ + 2
∞∑

𝑡=𝑇 ∗+1

𝐶4𝛿

𝑇 2

≤ 2𝐶3

(
𝐻𝑔, 𝜖2 ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾

+𝐶4𝛿𝜁 (2).

□

4 PROOF OF THEOREM 4.3
Claim: For any noise model verifying H1, setting 𝜖 < 1 and 𝛿 ≤ 𝑘𝑐/𝑁 , (1+1) LUCIE optimizes the stochastic
OneMax problem in O (𝑁 ln (𝑁 )) number of generations.

PRoof. To prove the result, we show that applying (1+1) LUCIE amounts to the same setting as Theorem 4 of
[1] while transferring the assumption on the degree of stochasticity (Equation 1 in their paper) to the parameter
𝛿 . Specifically, they prove that (1+1) Evolutionary Algorithm converges in O (𝑁 ln (𝑁 )) generations under a
restrictive assumptions on the problem’s degree of stochasticity that we detail now along with their notations.
Given an individual 𝑖 ∈ Ind𝑔, [1] introduce the notion of observation of the individual’s fitness as a random

variable, written 𝑋𝑙 , for 𝑓𝑖 = 𝑙 and 𝑙 ∈ {0, . . . , 𝑁 }. Recall that, in this setting, only the observed fitness could be
accessed by an algorithm as the evaluation protocol is subject to noise. To ease the comparison between (1+1)
LUCIE and (1+1) EA, we will write𝑂 (𝑖) the observation of the fitness of individual 𝑖 . At elite selection phase of
generation 𝑔, the observation of the individual’s fitness is different between both algorithms and we have:

𝑂 (𝑖) ∼ 𝑋𝑓𝑖 for EA,

𝑂 (𝑖) = 𝑓
𝑔,𝑡
𝑖 for LUCIE, given that TeRm𝑔,𝑡 is true.

In other words, during the selection of elites, we observe a single realization of the individual’s fitness random
variable in (1+1) EA while we observe the empirical mean in (1+1) LUCIE. Alongside, there is one assumption,
restricting the level of noise that the algorithm can handle, made in Theorem 4 of [1]:
H2: ∀𝑙 < 𝑁,∀𝑐 ∈]0, 19 [,

P (𝑋𝑙 < 𝑋𝑙+1) ≥ 1 − 𝑐
𝑁 − 𝑙

𝑁
.

Intuitively, successful elite selection for two individuals of fitness 𝑙 and 𝑙 +1must happen with a probability that
is not too low for (1+1) EA to converge. This effect is accentuated with individuals having a true fitness close to
𝑁 . Using our notations, this amounts to write:
H2: ∀𝑙 < 𝑁,∀𝑐 ∈]0, 19 [,∀𝑖1, 𝑖2 ∈ Ind,

P
(
𝑂 (𝑖1) < 𝑂 (𝑖2)

�� 𝑓𝑖1 = 𝑙, 𝑓𝑖2 = 𝑙 + 1
)
≥ 1 − 𝑐

𝑁 − 𝑙

𝑁
.
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Let us now verify that H2 is verified in the case of LUCIE. Consider two individuals 𝑖1, 𝑖2 ∈ Ind and 𝑙 < 𝑁 .

P
(
𝑂 (𝑖1) < 𝑂 (𝑖2)

�� 𝑓𝑖1 = 𝑙, 𝑓𝑖2 = 𝑙 + 1
)
= P

(
𝑓
𝑔,𝑡
𝑖1

< 𝑓
𝑔,𝑡
𝑖2

��� 𝑓𝑖1 = 𝑙, 𝑓𝑖2 = 𝑙 + 1
)

= 1 − P
(
𝑓
𝑔,𝑡
𝑖1

≥ 𝑓
𝑔,𝑡
𝑖2

��� 𝑓𝑖1 = 𝑙, 𝑓𝑖2 = 𝑙 + 1
)

(A.13)

The last term of the right-hand-side is linked with the failure probability of Theorem 4.1. Assume that 𝑓𝑖1 = 𝑙 and
𝑓𝑖2 = 𝑙 + 1, we show that the event of 𝑓 𝑔,𝑡𝑖1

≥ 𝑓
𝑔,𝑡
𝑖2

implies that either 𝑖1 or 𝑖2 is not well-behaved (Equation A.4).
Assume that 𝑖1 is well-behaved. As 𝑖1 ∈ Bot𝑔, we have that

𝑓
𝑔,𝑡
𝑖1

≤ 𝑓𝑖1 + 𝛽
(
𝑢
𝑔,𝑡
𝑖1
, 𝑡

)
.

Necessarily, as fitness are observed, this means in LUCIE that the stopping criterion (Equation 2) has been reached,
here by suggesting 𝑖1 as elite individual:

𝑓
𝑔,𝑡
𝑖1

− 𝛽
(
𝑢
𝑔,𝑡
𝑖1
, 𝑡

)
+ 𝜖 ≥ 𝑓

𝑔,𝑡
𝑖2

+ 𝛽
(
𝑢
𝑔,𝑡
𝑖2
, 𝑡

)
.

We now set 𝜖 < 1, so that we verify
𝑓𝑖1 < 𝑓𝑖2 − 𝜖

Combining those inequalities, we get that

𝑓𝑖2 > 𝑓𝑖1 + 𝜖 > 𝑓
𝑔,𝑡
𝑖1

− 𝛽
(
𝑢
𝑔,𝑡
𝑖1
, 𝑡

)
+ 𝜖 > 𝑓

𝑔,𝑡
𝑖2

+ 𝛽
(
𝑢
𝑔,𝑡
𝑖2
, 𝑡

)
,

which implies that 𝑖2 is not well-behaved. Therefore, the event of 𝑓 𝑔,𝑡𝑖1
≥ 𝑓

𝑔,𝑡
𝑖2

implies that either 𝑖1 or 𝑖2 is not
well-behaved. Hence, we have that

P
(
𝑓
𝑔,𝑡
𝑖1

≥ 𝑓
𝑔,𝑡
𝑖2

��� 𝑓𝑖1 = 𝑙, 𝑓𝑖2 = 𝑙 + 1
)
≤ P

(
¬𝑊𝐵

𝑔,𝑡
𝑖1
(𝑢𝑔,𝑡𝑖1 ) ∨ ¬𝑊𝐵

𝑔,𝑡
𝑖2
(𝑢𝑔,𝑡𝑖2 )

��� 𝑓𝑖1 = 𝑙, 𝑓𝑖2 = 𝑙 + 1
)

≤ P
(
∃𝑖 ∈ Ind𝑔,¬𝑊𝐵

𝑔,𝑡
𝑖 (𝑢𝑔,𝑡𝑖 )

��� 𝑓𝑖1 = 𝑙, 𝑓𝑖2 = 𝑙 + 1
)

≤
𝑛∑
𝑖=1

P
(
¬𝑊𝐵

𝑔,𝑡
𝑖 (𝑢𝑔,𝑡𝑖 )

��� 𝑓𝑖1 = 𝑙, 𝑓𝑖2 = 𝑙 + 1
)

≤
𝑛∑
𝑖=1

∞∑
𝑢=1

P
(
¬𝑊𝐵

𝑔,𝑡
𝑖 (𝑢)

��� 𝑓𝑖1 = 𝑙, 𝑓𝑖2 = 𝑙 + 1
)

≤
𝑛∑
𝑖=1

∞∑
𝑢=1

exp
(
−2𝑢𝛽 (𝑢, 𝑡)2

)
(Hoeffding’s bound)

≤
𝑛∑
𝑖=1

∞∑
𝑢=1

𝛿

𝑛𝑘𝑡4𝑢2

≤ 𝛿𝜁 (2)
𝑘𝑡4

≤ 𝛿

𝑘
,

as 𝜁 (2) < 2. Injected in Equation A.13, we get that

P
(
𝑂 (𝑖1) < 𝑂 (𝑖2)

�� 𝑓𝑖1 = 𝑙, 𝑓𝑖2 = 𝑙 + 1
)
≥ 1 − 𝛿

𝑘
.
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To verify Assumption H2, we shall set 𝛿/𝑘 ≤ 𝑐 (𝑁 − 𝑙)/𝑁 , which is verified for all 𝑙 for 𝛿 ≤ 𝑘𝑐/𝑁 . Setting this
condition on 𝛿 along with the condition 𝜖 < 1 and 𝑐 < 1/9 concludes the verification of the assumptions of
Theorem 4 of [1]. In turn, applying this result concludes the proof. □

5 PROOF OF THEOREM 4.4
Claim: For any noise model verifying H3 and H4, setting 𝜖 < 1 and 𝛿 ≤ 𝑘/12𝑁 2, (1+1) LUCIE optimizes the
stochastic LeadingOnes problem in O

(
𝑁 2) number of generations.

PRoof. Similarly to the proof ofTheorem 4.3, we demonstrate that applying (1+1) LUCIE amounts to the same
setting as Theorem 11 of [1]. Again, the assumption on on the degree of stochasticity (Equation 3 in their paper)
is transferred to a prerequisite on the value of 𝛿 . Borrowing the notations of [1], this assumption on the level of
noise is the following:
H5: ∀𝑙 ≤ 𝑁,∀𝑐 ∈]0, 1

12 [,
P

(
𝑋

opt
𝑙

< 𝑋
pes
𝑙+1

)
≥ 1 − 𝑐

𝑙𝑁
.

Borrowing the same notations as in the proof of Theorem 4.3, this amounts to the following:
H5: ∀𝑙 ≤ 𝑁,∀𝑐 ∈]0, 1

12 [,∀𝑖1, 𝑖2 ∈ Ind,

P
(
𝑂 (𝑖1) < 𝑂 (𝑖2)

��� 𝑖1 = 𝑥
opt
𝑙

, 𝑖2 = 𝑥
pes
𝑙+1

)
≥ 1 − 𝑐

𝑙𝑁
,

with the fact that an observation in (1+1) EA is a single sample of the random variable, while it is the empirical
mean of several samples in (1+1) LUCIE.

Let us now verify that H5 is verified in the case of LUCIE. Consider two individuals 𝑖1, 𝑖2 ∈ Ind and 𝑙 < 𝑁 .

P
(
𝑂 (𝑖1) < 𝑂 (𝑖2)

��� 𝑖1 = 𝑥
opt
𝑙

, 𝑖2 = 𝑥
pes
𝑙+1

)
= P

(
𝑓
𝑔,𝑡
𝑖1

< 𝑓
𝑔,𝑡
𝑖2

��� 𝑖1 = 𝑥
opt
𝑙

, 𝑖2 = 𝑥
pes
𝑙+1

)
= 1 − P

(
𝑓
𝑔,𝑡
𝑖1

≥ 𝑓
𝑔,𝑡
𝑖2

��� 𝑖1 = 𝑥
opt
𝑙

, 𝑖2 = 𝑥
pes
𝑙+1

)
(A.14)

The last term of the right-hand-side is linked with the failure probability of Theorem 4.1. Assume that 𝑖1 = 𝑥
opt
𝑙

and 𝑖2 = 𝑥
pes
𝑙+1 . Hence, 𝑓𝑖1 = 𝑙 and 𝑓𝑖2 = 𝑙 + 1. From now, we will use the same arguments as in the proof of

Theorem 4.1 where we proved that P
(
𝑓
𝑔,𝑡
𝑖1

≥ 𝑓
𝑔,𝑡
𝑖2

��� 𝑓𝑖1 = 𝑙, 𝑓𝑖2 = 𝑙 + 1
)
≤ 𝛿𝜁 (2)

𝑘𝑡4
≤ 𝛿

𝑘 , yielding

P
(
𝑓
𝑔,𝑡
𝑖1

≥ 𝑓
𝑔,𝑡
𝑖2

��� 𝑖1 = 𝑥
opt
𝑙

, 𝑖2 = 𝑥
pes
𝑙+1

)
≤ 𝛿

𝑘
.

Injecting in Equation (A.14), we get that

P
(
𝑂 (𝑖1) < 𝑂 (𝑖2)

��� 𝑖1 = 𝑥
opt
𝑙

, 𝑖2 = 𝑥
pes
𝑙+1

)
≥ 1 − 𝛿

𝑘
.

To verify H5, we shall set 𝛿/𝑘 ≤ 𝑐/𝑙𝑁 , which is verified for all 𝑙 for 𝛿 ≤ 𝑐𝑘/𝑁 2. Setting this condition on 𝛿 along
with the condition 𝜖 < 1 and 𝑐 < 1/12 concludes the verification of the assumptions of Theorem 11 of [1]. In
turn, applying this result concludes the proof. □

6 BINARY EVOLUTION ADDITIONAL RESULTS ON ONEMAX AND LEADINGONES
Learning curves for binary evolution under posterior Gaussian noise for the OneMax and LeadingOnes tasks
with vector size 𝑁 = 10. Recall that noise samples are added to the true individual’s fitness each time a fitness
is sampled.
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𝜎 = 0 𝜎 = 10 𝜎 = 30

O
ne

M
ax

Le
ad

in
gO

ne
s

Table 1. Results for OneMax and LeadingOnes under posterior Gaussian noise.

7 NEUROEVOLUTION ADDITIONAL RESULTS ON ROBOTICS TASKS

noise ratio = 0% noise ratio = 400% noise ratio = 800%

Ca
Rt

Po
le

Fi
tn
es
s

# Evaluations ×1000 # Evaluations ×1000 # Evaluations ×1000
Table 2. Training fitness for CaRtPole neuroevolution under posterior uniform noise.
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noise ratio = 0% noise ratio = 400% noise ratio = 800%

A
cR

ob
ot

Fi
tn
es
s

# Evaluations ×1000 # Evaluations ×1000 # Evaluations ×1000
Table 3. Training fitness for AcRobot neuroevolution under posterior uniform noise.

noise ratio = 0% noise ratio = 400% noise ratio = 800%

Pe
nd

ul
um

Fi
tn
es
s

# Evaluations ×1000 # Evaluations ×1000 # Evaluations ×1000
Table 4. Training fitness for Pendulum neuroevolution under posterior uniform noise.
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