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Figure 1: The LUCIE individuals selection procedure.

ABSTRACT
Selection in genetic algorithms is difficult for stochastic problems
due to noise in the fitness space. Common methods to deal with
this fitness noise include sampling multiple fitness values, which
can be expensive.We propose LUCIE, the Lower Upper Confidence
Intervals Elitism method, which selects individuals based on confi-
dence. By focusing evaluation on separating promising individuals
from others, we demonstrate that LUCIE can be effectively used as
an elitism mechanism in genetic algorithms. We provide a theo-
retical analysis on the convergence of LUCIE and demonstrate its
ability to select fit individuals across multiple types of noise on the
OneMax and LeadingOnes problems. We also evaluate LUCIE as
a selection method for neuroevolution on control policies with sto-
chastic fitness values.
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1 INTRODUCTION
Fitness evaluation of individuals in practical Evolutionary Algo-
rithms (EAs) applications is often subject to noise, and estimating
the true individual expected fitness across the population can eas-
ily become costly. In this context, identifying the best candidates
for elitism with as few fitness samples as possible is an appealing
feature. We consider the problem of optimizing a fitness function
when only noisy observations of this fitness at queried solution
points are available to an algorithm. This case is very common, as
exact evaluation of solutions may be prohibitively costly to obtain,
impossible to simulate, or only possible with a non-exact simula-
tion [7, 20]. In such a case, different evaluations of the same solu-
tion often feature high variance [27], in some cases intentionally
injected into simulations to increase realism.

We approach this problem through improving the elitism mech-
anism in EAs. EAs follow a common pattern of 1) evaluating a pop-
ulation of solutions, called individuals or candidates, 2) generating
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a new population through selection and recombination of mem-
bers of the former population, 3) repeating from step 1 [8]. Each
completion of this loop is called a generation. An important step
in many EAs is elitism, or the conservation of a subset of the best
individuals from one generation to the next. Elitism is often used
in genetic algorithms and multi-objective optimization to ensure
that fit individuals remain in the population [3, 19]. The selection
of these elites is usually done through taking the best individuals
according to their fitness values, i.e., truncation selection [30]. In
the presence of noisy observations of this fitness, this selection
phase can be misled and include individuals with low expected
fitness value but high observed fitness. Misclassifying elites and
non-elites may in turn prevent optimization in EAs.

Noisy fitness evaluations are often handled through fitness ap-
proximation, specifically through resampling and surrogate mod-
elling methods. Resampling methods aggregate a fixed number of
evaluations of an individual’s fitness into an empirical mean, esti-
mating the expected fitness of the individual.Thismethod is simple
but costly in terms of number of evaluations. In surrogate mod-
elling methods, a model such as a Gaussian Process is constructed
to approximate the fitness function. Surrogate modelling is often
used for fitness approximation in EAs in general, as exact fitness
values can be costly or difficult to calculate [22]. However, surro-
gate models are difficult to employ for certain EAs, for example
neuroevolution where the dimensionality of the genotype may be
very high or variable [13].

In this work, we propose LUCIE (Lower Upper Confidence In-
tervals Elitism), a method for efficient and accurate selection of
elites. In LUCIE, this selection problem is cast as a Multi-Armed
Bandit (MAB) problem of best 𝜇 arms identification. The arms, in
this case, are the individuals of the population, as illustrated by
Figure 1. For each individual, LUCIE maintains an empirical esti-
mate of its expected fitness, along with a confidence interval. To
efficiently identify elites, LUCIE sequentially samples individuals
that are hard to classify as elite or non-elite. This sampling strat-
egy allows the algorithm to perform selectionwith high confidence
while running a limited number of evaluations. Furthermore, the
use of confidence intervals allows to guarantee that the elite sub-
set is correctly identified with high probability. Figure 1 illustrates
this general process.

The outline of the paper is as follows. In Section 2, we intro-
duce key notions and related work. Then, we describe the LUCIE
algorithm in Section 3. In Section 4, we study LUCIE theoretically.
We demonstrate that, during a generation, it selects 𝜖-optimal elite
members with probability at least 1− 𝛿 in a finite number of steps.
We also formally demonstrate that LUCIE is able to converge to
optimal solutions in the stochastic versions of the OneMax and
LeadingOnes problems with only mild restrictions on the noise
model [16]. In Section 5we carry out an empirical analysis of LUCIE.
First, we confirm the surprising ability of LUCIE to converge to op-
timal solutions of the OneMax and LeadingOnes problems, even
under heavy levels of noise. We then apply LUCIE to neuroevo-
lution of robotic control policies and observe again that LUCIE is
able to find optimal policies even under heavy levels fitness noise.
We conclude in Section 6.

2 BACKGROUND & RELATEDWORK
Fitness approximation for EAs is a large domain which focuses on
reducing computation cost of fitness evaluation, informing fitness
evaluation with models or analysis of the objective function, or
fully replacing evaluations with a surrogate model [21, 22]. Here,
we focus on the specific case of overcoming noise in fitness evalu-
ations. We first overview the problem of stochastic objective func-
tions, then desribe the two families of approaches for this class of
problems: resampling and surrogate models. Finally, we provide
an overview of bandits algorithms, on which LUCIE is based.

2.1 Stochastic objective functions
Two main sources of stochasticity in fitness evaluation for EAs
have been theoretically studied, namely, prior and posterior noise
[26]. Prior noise [10, 16] refers to the stochastic perturbation of a
solution prior to its evaluation through a deterministic fitness func-
tion. For example, in the noisy OneMax problem, a binary geno-
type is randomlymodified by flipping a percentage of bits and then
is evaluated with the standard OneMax function, i.e. the sum of
genes. Posterior noise [11, 12, 16] refers to the addition of noise, a
random variable sampled according to a defined distribution 𝐷 , to
the deterministic fitness evaluation of a solution. In [12], the differ-
ence between Gaussian and uniform noise posterior noise is stud-
ied for the OneMax problem, demonstrating that the (𝜇 + 1) − 𝐸𝐴
scales to uniform but not Gaussian noise. We focus in this work on
posterior noise.

In many applications, noise may be intrinsically linked to the
fitness function. In robotics, for example, actuators may introduce
prior noise by modifying actions randomly and sensors may give
noisy state information [20]. In robot simulation environments,
noise may be injected inside the simulation loop or during policy
evaluation to encourage robust policies which can be deployed in
the real world [27]; as such, there is both prior and posterior noise
in robotics. Other applications which use simulation for optimiza-
tion with EAs may contain similar sources of noise.

2.2 EAs for stochastic problems
Resampling. The first approach to overcoming noisy fitness func-
tions is simply to collect more fitness samples, i.e., resampling. Re-
sampling methods aggregate a fixed number of evaluations of an
individual’s fitness into an empirical mean estimating the expected
fitness of the individual. While this method is simple, it is costly
in terms of evaluation time, while EAs often require many eval-
uations. Regarding classical resampling strategies, [1] propose a
general resampling method to improve iterative optimization al-
gorithms in stochastic settings. Their approach has been applied
to EAs in [26], who find an upper-bound on the required number
of samples per-individual to find an optimal solution with high
probability. [9] suggest the use of empirical median rather than
empirical mean while using resampling for selection. They demon-
strate theoretically the advantage of the median in terms of robust-
ness and sample complexity. [12] observe that EAs using myopic
mutation operators essentially perform random walk in the sto-
chastic setting. They propose a theoretical and empirical analysis
of the Compact Genetic Algorithm (cGA), which learns the allele
distribution of an optimal solution for a given problem, and show



LUCIE: An Evaluation and Selection Method for Stochastic Problems GECCO ’22, July 9–13, 2022, Boston, MA, USA
F
it
n
e
ss

Individuals

High Low

(a) (b)

Start

F
it
n
e
ss

Individuals

(d)
≥ ε

High Low

(c) Sampling
candidates

While

F
it
n
e
ss

Individuals

(e)
≤ ε

High Low

(f) Elite

Stop

Figure 2:TheLUCIE individuals selection procedure. (a) Individuals fromprevious generationsmayhave already been sampled
several times, inducing narrow confidence bounds. (b) New individuals are sampled once, inducing larger confidence bounds.
(c) At each step, the two most ambiguous candidates regarding elitism are sampled. (d) If the uncertainty gap between the
bounds of the sampling candidates is larger than 𝜖, the process repeats itself. (e) It stops when the gap is lesser than 𝜖. (f) The
selected elite set is the 𝜇 individuals with highest estimated expected fitness.

better performance comparatively to resampling Random Local
Search (RLS). Overall, the computational cost of resampling indi-
viduals fitness a fixed number of times hinders the applicability of
resampling EA. LUCIE overcomes this aspect by selectively choos-
ing individuals to evaluate, reducing the overall cost of selection.

Surrogate Modeling. The second approach for reducing the impact
of noise in fitness evaluation is surrogate modelling. Those meth-
ods use a model to learn the fitness landscape, as a function of indi-
vidual’s features. [21, 22] survey surrogate-assisted EAs and show
their benefits as both permitting fast evaluation of new individuals
and driving exploration of the search space. The author also stress
the limitations of surrogates which may mislead an optimizer to a
false optima and be prohibitively costly (e.g., Gaussian Processes
[28, 31]). [21] also exhibit the limitation of modelling in that the ex-
pressiveness of themodel should be able to capture the fitness land-
scape, which is sometimes a strong assumption. [31] use a Gauss-
ian Process surrogate model to perform pre-selection of individu-
als during elite selection. The pre-selected subset is then refined
by evaluating the most promising individuals. SAIL [13] improve
the MAP-Elite algorithm [7] by modelling the relation between
feature space and fitness function, yielding a better exploration-
exploitation tradeoff. Similarly to SAIL, [18] propose to model the
feature-objective mapping, but using hierarchical surrogates, im-
proving scaling to the dimensionality of the feature space. [14]
successfully apply surrogate modelling to neuroevolution. They
leverage a distance measure between individuals to permit model
predictions for neural networks. LUCIE removes the necessity of
maintaining a supplementary and potentially costlymodel, as com-
putational overhead of the method is negligible, which motivates
the approach compared to surrogate modelling.

2.3 Best arms identification in MAB
TheMulti-Armed Bandit is a problem of resource allocation: given
a set of possible choices, or arms, each yielding a reward, one seeks
to maximize one’s expected gain as quickly as possible [25]. Be-
sides the goal of gain maximization, bandits algorithms aiming at
identifying the best arm or a set of best arms have been derived
[5, 15, 24]. As our goal in this paper is to identify the best candi-
dates within a population, we are interested in the latter. In this

setting, [5] propose the Successive Accepts and Rejects (SAR) al-
gorithm, identifying the best 𝜇 arms by sequentially accepting or
rejecting individuals. [24] propose the Lower Upper Confidence
Bounds (LUCB) algorithm for identifying the best 𝜇 arms with PAC
guarantees, yielding an 𝜖-close solution with probability at least
1− 𝛿 , reached within a polynomial number of steps. They draw in-
spiration from the gain maximization UCB algorithm [2] to exploit
confidence intervals in order to measure uncertainty and propose
a provably efficient algorithm. We build on LUCB to propose the
LUCIE selection method for EAs, presented in the next section.

3 THE LUCIE ALGORITHM
The LUCIE algorithm answers the problem of elite selection in evo-
lutionary algorithms when fitness evaluation is subject to noise.
Specifically, elitism consists in selecting the 𝜇 individualswith high-
est expected fitness, in a population of size 𝑛 = 𝜇 + 𝜆. In noisy fit-
ness contexts, poor elite selection methods cause good individuals
to be lost between generations, which hinders the overall perfor-
mance of the EA.Therefore, a good elite selection strategy predicts
individual average fitnesses both accurately and efficiently, that is
with as few samples as possible. In light of these two objectives,
we cast this selection problem as a multi-armed bandit optimiza-
tion problem where the arms are the individuals. The goal of the
problem is then to identify the 𝜇 elites as quickly as possible with
high accuracy. In the MAB literature, this formulation is close to
the best 𝜇 arms identification problems tackled in [5, 23, 24]. We
elaborate LUCIE on the foundation of the LUCB algorithm intro-
duced by [24]. LUCB is a Probably Approximately Correct (PAC)
[32] method for identifying the best 𝜇 arms in a polynomial num-
ber of steps with a controlled probability of failure. LUCIE extends
the LUCB algorithm in the context of evolutionary algorithms, see-
ing each generation’s elite selection problem as a best 𝜇 individu-
als identification problem. Therefore, LUCIE solves a sequence of
separate, correlated bandit problems, by leveraging the history of
fitness samples collected for elite individuals in previous genera-
tions.
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3.1 Algorithm outline
During selection, LUCIE sequentially samples individual fitnesses
to identify the 𝜇 elite members as fast as possible. Instead of uni-
formly sampling the individuals, it focuses on those that are hard
to classify as belonging or not to the elite. To do so, for each in-
dividual, LUCIE maintains both an empirical estimate of its true
fitness and a confidence bound on this estimate. At each step 𝑡 of
the current generation’s selection process, the two “most ambigu-
ous” individuals are sampled, and the confidence bounds of all in-
dividuals are updated. So at time step 𝑡 of generation 𝑔, exactly 2𝑡
individual fitnesses have been drawn. Once the confidence bounds
are tight enough to accurately distinguish elite members from the
rest, the process terminates and the algorithm proceeds to the next
generation. This process is illustrated on Figure 2 and Algorithm
1.

Algorithm 1: LUCIE selection algorithm
Sample each new individual at least once
Update bounds for all individuals
while Termination criterion of Equation (2) is not verified do

Sample fitness of 𝑙𝑡 and ℎ𝑡 (Equation (1))
Update empirical fitnesses 𝑓 𝑔,𝑡

𝑙𝑡
and 𝑓

𝑔,𝑡
𝑙𝑡

Update bounds for all individuals
end

Consider generation 𝑔. We write Ind𝑔 the set of individuals, i.e.,
bandit arms, and 𝑓𝑖 the true (unknown) expected fitness of 𝑖 ∈ Ind𝑔 .
Without loss of generality and for the sake of simplicity, we shall
assume in this section that 𝑓𝑖 ∈ [0, 1],∀𝑖 , and that the samples pro-
duced from the (stochastic) evaluation are also comprised between
0 and 1. For each individual, we maintain a memory of its fitness
samples empirical average, and the number of times it has been
evaluated since it was spawned. We write 𝑢𝑔,𝑡𝑖 the total number of
fitness samples collected over the lifespan of individual 𝑖 , until step
𝑡 of generation 𝑔. Note that this includes samples collected in pre-
vious generations. The true expected fitness of each individual is
estimated based on the empirical mean of these samples, denoted
by 𝑓

𝑔,𝑡
𝑖 . We write Top𝑔 the set of the 𝜇 individuals with highest

(true) expected fitness, and, Bot𝑔 the 𝜆 remaining individuals. For
𝜖 ∈ [0, 1], we define Good𝑔 the set of (𝜖, 𝜇)-optimal individuals,
and Bad𝑔 its complement in Ind𝑔 , as

Good𝑔 def
= {𝑖 ∈ Ind𝑔, 𝑓𝑖 ≥ min

𝑗∈Top𝑔
𝑓𝑗 − 𝜖},

Bad𝑔 def
= Ind𝑔 \ Good𝑔 .

As is, Good𝑔 contains candidates that are either in Top𝑔 or at
most 𝜖 worse than Top𝑔’s weakest member.The objective of LUCIE
is to return a set of 𝜇 individuals in Good𝑔 at each generation.
At each step, the algorithm separates the population in two sets:
High𝑔,𝑡 , the set of the 𝜇 individuals with largest fitness estimates,
and Low𝑔,𝑡 , the set of the 𝜆 remaining individuals. High𝑔,𝑡 is the
set of current best elite estimates. Appendix 1 provides a graphical
summary of the sets defined herein.

The confidence intervals are used to determine both the sam-
pling strategy and the termination criterion. Intuitively, they are

defined so that an individual’s true expected fitness falls with high
probability between its lower and upper confidence bounds. We
makes use of a bounding function 𝛽 : N2 → R. The upper confi-
dence bound of an individual 𝑖 is defined as 𝑓 𝑔,𝑡𝑖 +𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
, and its

lower confidence bound as 𝑓 𝑔,𝑡𝑖 − 𝛽
(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
. Before giving a closed-

form expression of 𝛽 in Section 4, we explain how it is employed in
the sampling strategy and the stopping criterion of the algorithm.

Sampling strategy. In LUCIE, identification of the elite is per-
formed by sequentially sampling individuals among the popula-
tion. To quickly identify elite individuals, we adopt the same strat-
egy as [24].They provide arguments suggesting that sampling both
the individual of lowest lower bound in High𝑔,𝑡 and the individual
of highest upper bound in Low𝑔,𝑡 is efficient. We define them as

ℎ𝑡
def
= argmin

𝑖∈High𝑔,𝑡
𝑓
𝑔,𝑡
𝑖 − 𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
,

𝑙𝑡
def
= argmax

𝑖∈Low𝑔,𝑡
𝑓
𝑔,𝑡
𝑖 + 𝛽

(
𝑢
𝑔,𝑡
𝑖 , 𝑡

)
.

(1)

These two individuals are the most ambiguous regarding elitism.
Overall, when a new generation starts, LUCIE samples at least once
each new individual and then samples sequentially pairs of individ-
uals according to Equation (1) until termination.

Termination criterion.Thealgorithm terminates once the pop-
ulation is separated between the estimated elite and the rest with
high certainty.This corresponds to the casewhere the lower-bounds
of the individuals in High𝑔,𝑡 are all above the upper-bounds of the
individuals in Low𝑔,𝑡 . An error margin of 𝜖 is allowed. Formally,
the algorithm stops if the following inequality is verified:

𝑓
𝑔,𝑡
𝑙𝑡

+ 𝛽
(
𝑢
𝑔,𝑡
𝑙𝑡
, 𝑡

)
< 𝑓

𝑔,𝑡
ℎ𝑡

− 𝛽
(
𝑢
𝑔,𝑡
ℎ𝑡
, 𝑡

)
+ 𝜖. (2)

Once this criterion is reached, the EA carries the estimated elite
High𝑔,𝑡 over to the next generation 𝑔 + 1, where 𝜆 new candidates
are created to populate Ind𝑔+1, and the process is repeated.

4 THEORETICAL ANALYSIS
This section discusses LUCIE’s theoretical properties. Theorem 4.1
states the conditions on 𝛽 under which LUCIE is correct with high
probability, that is, upon termination, it identifies a set of (𝜖, 𝜇)-
optimal arms with high probability. In turn, these conditions al-
low deriving the analytical form of the confidence interval 𝛽 in
Equation (4). In Theorem 4.2, we show that, using this bound 𝛽 ,
LUCIE converges to a solution in a finite number of fitness samples
that is log-linear in the problem complexity. Then, inTheorems 4.3
and 4.4, we show that LUCIE converges in a finite number of gener-
ations on the stochastic version of the OneMax and LeadingOnes
problems. Importantly, we show that this is achieved regardless of
the degree of stochasticity, meaning that convergence is ensured,
even with highly stochastic fitness functions.

4.1 Correctness and Sample Complexity
The first result establishes a condition on 𝛽 for LUCIE to return
(𝜖, 𝜇)-optimal solutions. We define [𝑎 ∧ 𝑏] def

= max {𝑎,𝑏} ,∀𝑎, 𝑏 ∈
R. The results presented in this section are extensions of the LUCB
[24] properties to the evolutionary setting.
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TheoRem 4.1 (PRoof of coRRectness). Let 𝑔 be the current gen-
eration and 𝛽 : N2 → R+ a function such that

𝑛∑
𝑖=1

∞∑
𝑡=1

∞∑
𝑢=1

exp
(
−2𝑢𝛽 (𝑢, 𝑡)2

)
≤ 𝛿, (3)

if LUCIE terminates (Equation 2), the probability of returning a non-
(𝜖, 𝜇)-optimal individual is at most 𝛿 , with 0 < 𝛿 ≤ 0.5.

All proofs are deferred to the Appendix. Choosing 𝛽 such that
Equation (3) is verified allows bounding by 𝛿 the probability of
failing (i.e., returning a non-(𝜖, 𝜇)-optimal solution). Equation (3)
leads to the following choice of 𝛽 :

𝛽 (𝑢, 𝑡) def
=

√
1
2𝑢

ln

(
𝑛𝑘𝑡4𝑢2

𝛿

)
, (4)

where 𝑘 = 𝜋6/540 ≈ 1.8. This resulting bound is different from the
LUCB bound in two matters. First, the appearance of 𝑢2 in the log,
which comes from the possibility for the number of samples 𝑢 to
be arbitrarily large. Secondly, and most importantly, this number
of samples is the number of times an individual has been sampled
since its creation. Therefore, the value of𝑢 may be large and exceed
the number of steps 𝑡 in the case of an elite individual persisting
between generations. This is an advantage of LUCIE: past samples
are retained across generations, keeping the uncertainty of fitness
estimates low. Using the bound of Equation (4), we obtain that the
algorithm reaches the termination criterion of Equation (2) in a
finite number of steps, polynomial in the problem complexity. Fol-
lowing [24], the problem complexity 𝐻𝑔,𝜏 is defined as the prox-
imity between elite and non-elite expected fitnesses. We shall first
introduce the notion of domination gap Δ𝑖 before defining 𝐻𝑔,𝜏 :

Δ𝑖
def
=


𝑓𝑖 − max

𝑗∈Bot𝑔
𝑓𝑗 if 𝑖 ∈ Top𝑔,

min
𝑗∈Top𝑔

𝑓𝑗 − 𝑓𝑖 if 𝑖 ∈ Bot𝑔 .

Intuitively, the smaller the domination gaps, the less distinction
between elite and non-elite members, i.e., the harder the problem
is. This yields the following definition of the problem complexity:

𝐻𝑔,𝜏 def
=

∑
𝑖∈Ind𝑔

1[
𝜏 ∧ Δ2

𝑖

]2 .
𝐻𝑔,𝜏 aggregates all the domination gaps of the individuals, capped
by a parameter value 𝜏 . This implies that 𝐻𝑔,𝜏 is bounded between
𝑛 and 𝑛/𝜏2. 𝜏 is a tolerance threshold beyond which individuals are
considered to yield equivalent expected fitness. We use 𝜏 = 𝜖/2 in
the sample complexity result below.

TheoRem 4.2 (Expected Sample Complexity). At generation 𝑔,

the expected sample complexity of LUCIE is O
((
𝐻𝑔, 𝜖2 ln

(
𝐻𝑔, 𝜖2

𝛿

)) 1
𝛾

)
,

with 𝛾 any constant value such that 0 < 𝛾 < 0.57.

This result guarantees that the algorithm will converge in a fi-
nite number of steps. Finally, as 𝛽 verifies Equation (3), LUCIE is
able to select (𝜖, 𝜇)-optimal individuals in an expected number of
steps which is polynomial in the problem complexity 𝐻𝑔, 𝜖2 .

4.2 Stochastic OneMax and LeadingOnes
We now characterize sample complexity in the noisy OneMax and
LeadingOnes optimization problems. This study has been carried
out for the case of (1+1) EA by [16] and we here realize its counter
part for the case of LUCIE.

OneMax. The OneMax(𝑥) function counts the number of 1s in a
vector of bit 𝑥 of length 𝑁 . Instead of the true fitness 𝑓𝑖 , sampling
an individual’s fitness yields a noisy observation 𝑂 (𝑖), which is
a random variable following a so-called noise model. [16] make
two assumptions regarding the noise model. First, they assume
the larger the true difference in fitness, the more likely the obser-
vations are correctly ordered. Formally, this is written H1: ∀𝑗 ≤
𝑙 < 𝑁,∀𝑖1, 𝑖2 ∈ Ind, P(𝑂 (𝑖1) < 𝑂 (𝑖2) |𝑓𝑖1 = 𝑗, 𝑓𝑖2 = 𝑙 + 1) ≤
P

(
𝑂 (𝑖1) < 𝑂 (𝑖2)

�� 𝑓𝑖1 = 𝑙, 𝑓𝑖2 = 𝑙 + 1
)
.

The second assumption is more restrictive. The probability of
correctly ordering consecutive fitness individuals must not be too
low:
H2: ∀𝑙 < 𝑁,∀𝑐 ∈ (0, 19 ),∀𝑖1, 𝑖2 ∈ Ind,

P
(
𝑂 (𝑖1) < 𝑂 (𝑖2)

�� 𝑓𝑖1 = 𝑙, 𝑓𝑖2 = 𝑙 + 1
)
≥ 1 − 𝑐

𝑁 − 𝑙

𝑁
.

H2 has a direct impact on the bearable level of noise by (1+1) EA,
which is expected. Indeed, in (1+1) EA, elite selection is performed
on a single fitness observation, which is less likely to be correct if
H2 is not verified. This restrictive assumption makes (1+1) EA un-
fit for stochastic OneMax with high levels of noise. For instance,
if the noise on 𝑓𝑖 follows a centered Gaussian law, H2 requires the
variance 𝜎2 to be O (log(𝑁 )/𝑁 ) to ensure convergence in a poly-
nomial number of generations. In the following result, we show
that LUCIE converges in the same number of generations as (1+1)
EA while not requiring condition H2. Instead, we set a condition
on the values of 𝜖 and 𝛿 .

TheoRem 4.3. For any noisemodel verifying H1, setting 𝜖 < 1 and
𝛿 ≤ 𝑘𝑐/𝑁 , (1+1) LUCIE optimizes the stochastic OneMax problem
in O (𝑁 ln (𝑁 )) number of generations.

LeadingOnes. A similar result can be achieved for the Leadin-
gOnes function which counts consecutive 1s from the first bit in a
binary vector of length 𝑁 . Again, an observation 𝑂 (𝑖) is returned
instead of the true fitness of individual 𝑖 . We also introduce the bits
vectors 𝑥opt

𝑙
and 𝑥pes

𝑙
for 𝑙 ≤ 𝑁 , respectively a vector of 1s except

one single 0 at position 𝑙 + 1, and a vector of 1s except for 𝑁 − 𝑙 0s
at the end. [16] make three assumptions (H3, H4, and H5) regard-
ing the noise model. Condition H3 states that for an individual
of true fitness 𝑙 , the observation is drawn according to a distribu-
tion between𝑂 (𝑥opt

𝑙
) and𝑂 (𝑥pes

𝑙
) with respect to stochastic domi-

nance. Condition H4 imposes that the larger the true difference in
fitness, the more likely the observations are correctly ordered. For-
mally, H4: ∀𝑗 ≤ 𝑙 < 𝑁,∀𝑖1, 𝑖2 ∈ Ind,∀𝑠 ∈ {opt, pes} , P(𝑂 (𝑥𝑠𝑗 ) <

𝑂 (𝑥𝑠
𝑙+1)) ≤ P(𝑂 (𝑥𝑠

𝑘
) < 𝑂 (𝑥𝑠

𝑙+1)). Finally, assumption H5 is more
restrictive. Similarly to the case of OneMax, the probability of cor-
rectly ordering consecutive fitness individuals must not be too low:
H5: ∀𝑙 ≤ 𝑁,∀𝑐 ∈]0, 1

12 [,∀𝑖1, 𝑖2 ∈ Ind,

P
(
𝑂 (𝑖1) < 𝑂 (𝑖2)

��� 𝑖1 = 𝑥
opt
𝑙

, 𝑖2 = 𝑥
pes
𝑙+1

)
≥ 1 − 𝑐

𝑙𝑁
,
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# Evaluations ×1000 # Evaluations ×1000 # Evaluations ×1000
Table 1: Results for OneMax and LeadingOnes under posterior uniform noise.

H5 has the same impact on the noise model as H2. Again, as obser-
vations are single samples in the case of (1+1) EA, the probability
for those samples to yield a wrong ordering must not be too high
for the algorithm to converge in a finite number of generations.
We translate this restriction H5 in terms of 𝜖 and 𝛿 parameters for
LUCIE in the following result.

TheoRem 4.4. For any noise model verifying H3 and H4, setting
𝜖 < 1 and𝛿 ≤ 𝑘/12𝑁 2, (1+1) LUCIE optimizes the stochastic Leadin-
gOnes problem in O

(
𝑁 2) number of generations.

Overall, to provably solve the noisy OneMax and LeadingOnes
problems in a finite number of generations, (1+1) EA depends on
two restrictive assumptions H2 and H5 on the level of noise [16].
LUCIE can overcome those assumptions by selecting (𝜖, 𝜇)-optimal
individualswith high probability (Theorem 4.1).This translates into
a specific choice of 𝜖 and 𝛿 parameters.

5 EXPERIMENTAL ANALYSIS
In this section, we empirically validate the advantage of LUCIE in
terms of efficient and accurate elite selection1. First, we validate
our theoretical results on OneMax and LeadingOnes with exper-
iments that apply uniform and Gaussian posterior noise to fitness.
Secondly, we explore the use of LUCIE on more complex objective
functions by studying neuroevolution for control policy optimiza-
tion. We evolve neural networks which control actions in three
different classic robotic tasks. This increases the complexity in the
objective function and uses a much larger genotype than the One-
Max and LeadingOnes problems. Due to the problem complex-
ity and genome size, we do not compare with surrogate modelling
technique but rather with resampling methods.

In all experiments, we benchmark three algorithms, namely the
(𝜇 + 𝜆) EA, a resampling EA (which also has a (𝜇 + 𝜆) population
1Code available at github.com/TemplierPaul/pyUCEA

𝜇 𝜆 𝐵 𝜖 𝛿 𝛼 𝑛RS
(a) 6 18 120 1 0.1 𝑓max − 𝑓min 10
(b) 4 16 104 𝑓max − 𝑓min 0.1 𝑓max − 𝑓min 10

Table 2: Parameters for (a) binary optimization and (b) neu-
roevolution experiments.

size), and LUCIE. All algorithms use tournament selection for se-
lecting offspring’s parent individuals with a tournament size of 3.
We write 𝑛RS the number of samples per-individual used for selec-
tion in resampling EA. Hence, (𝜇+𝜆) EA performs 𝜇+𝜆 evaluations
per generations while resampling EA performs 𝑛RS×𝜆 evaluations.
In LUCIE, convergence to the exact (𝜖, 𝜇)-optimal individuals is
not always desirable, typically, in the case where individuals all
have similar expected fitness. To prevent the algorithm from get-
ting stuck in such a case, we max out the number of evaluation
per generation with a parameter 𝐵. The termination criterion is
thus reached either with Equation (2) or by reaching 𝐵 evaluations.
Confidence bounds were scaled using a multiplying factor 𝛼 to ac-
count for the variation in fitness value ranges between different
environments, as Equation (4) and (2) assume that fitness values
are in [0, 1]. In the binary optimization experiment, we kept 𝛼 as
a constant parameter. In neuroevolution, 𝛼 was defined as the dif-
ference of the largest fitness value from the previous generation,
𝑓max = max𝑖 (𝑓 𝑔−1𝑖 ), and the smallest, 𝑓min = min𝑖 (𝑓 𝑔−1𝑖 ), yielding
𝛼

def
= (𝑓max− 𝑓min). In practice, this corresponds to the realistic case

where maximum fitness of the problem is unknown. In this case,
we also scale the value of 𝜖 so that all members of the stopping
criterion inequality (Equation (2)) have the same scale.
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5.1 Binary optimization
We optimize the stochastic OneMax and LeadingOnes functions
under several posterior noise models. Individuals are represented
by a bits vector of size 𝑁 = 10, leading to a maximum possible ex-
pected fitness of 10. Creation of offsprings is performed via a mu-
tation operator, flipping each bit with probability 1/10. Gaussian
noise is drawn from a normal distribution of standard deviation 𝜎 .
Uniform noise is drawn uniformly in [−10, 10] and then multiplied
by a noise ratio that is a parameter. In both cases, a noise sample
is added to the true individual’s fitness each time a fitness is sam-
pled. We report results for noise parameters of 𝜎 ∈ {0, 10, 30} and
a noise ratio in {0%, 100%, 200%}. Table 2 reports the parameters
for LUCIE, (𝜇 + 𝜆) EA and resampling EA. Shared parameters are
common to all algorithms. Results are reported in Table 1 for uni-
form noise and in Appendix 6 for Gaussian noise. We show one
standard deviation as confidence intervals obtained with 100 runs
for both experiments.

In low noise regimes, we first observe that (𝜇 +𝜆) EA shows the
highest convergence speed while resampling EA shows the lowest.
This is too be expected as computation is wasted on resampling for
the latter. Lower Upper Confidence Intervals Elitism (LUCIE) miti-
gates this effect by dynamically triggering the end of a generation
thanks to the stopping rule. Thus, it shows an in-between perfor-
mance. Further tuning of the 𝜖 parameter would guarantee that
LUCIE uses fewer evaluations per generation as the stopping con-
dition would be reached faster. In medium noise regime, LUCIE
outperforms the EAs baselines consistently. The resampling EA
outperforms (𝜇 + 𝜆) EA as elite selection becomes difficult. The
latter shows no-learning progress as the level of noise is too high.
These effects are augmented in the high noise setting. As LUCIE
is able to successfully adapt to all noise regimes, this makes it a
good, versatile, candidate in face of uncertainty with that respect,
while having to chose between resampling or not may hinder an
EAs performance. Generally in those experiments, LUCIE featured
less variance than any other EA. We believe that the stronger as-
sessment of elite individuals it provides yields stability in learning.
All those conclusions can be observed in both Gaussian and uni-
form noise, suggesting that LUCIE is robust to the type of noise it
faces.

5.2 Neuroevolution
Weevolve policies for three robotic control tasks, specifically CaRt-
Pole balancing, the AcRobot swing-up problem [29], and an in-
verted Pendulum cart balancing. We use the OpenAI gym imple-
mentation of these problems [4]. Individuals are represented by a
neural network parameterized by two dense layers of size 32 using
tanh activation function with a linear output layer corresponding
to the number of actions. Genes are continuous values initialized
using a Glorot initialization [17]; mutation consists of the applica-
tion of Gaussian noise with a standard deviation of 0.1, similar to
the Genetic Algoritm neuroevolution in [6].

We report results for noise parameters of noise ratio in { 0%,
200%, 400%, 600%, 800% }. The algorithms parameters are summa-
rized in Table 2 and shared parameters are common between tasks.
Validation results are reported in Tables 3, 4 and 5 which show box-
plots displaying quartiles as confidence intervals obtained with 30

runs for each experiment. Additional results are reported in Appen-
dix 7. In low noise regimes, LUCIE features a similar final score as
resampling EA, while being outperformed by (𝜇 + 𝜆) EA, except
in the CaRtPole case where they all reach top expected fitness. In
medium noise regimes, LUCIE reaches better final score as the EAs
consistently. Like in binary evolution, resampling EA outperforms
(𝜇 + 𝜆) EA as elite selection becomes difficult under higher levels
of noise. Critically, LUCIE is able to converge to optimal solutions
in extreme level of noise, reaching high scores up to 800% of noise
ratio. Generally in most experiments, LUCIE featured less variance
than classical EA. This observation reinforces our belief that accu-
rate elite selection leads to stable learning, confirming results on
OneMax and LeadingOnes.

6 CONCLUSION
We introduced LUCIE, an individuals selectionmethod fit for elitism
in EAs optimizing stochastic fitness functions. LUCIE casts the
problem of selection to a bandit problem of best 𝜇 arms identifi-
cation. An empirical mean fitness along with a confidence inter-
val is maintained for each individual, permitting to stop the algo-
rithmwhen (𝜖, 𝜇)-optimal individuals are selected with probability
at least 1−𝛿 . This later property of LUCIE was demonstrated in our
theoretical analysis. Furthermore, we formally showed that conver-
gence in the stochastic versions of the OneMax and LeadingOnes
problems was enabled for mild assumptions on the noise level. In
comparison, standard EAs need strong requirements, linked to the
noise variance, for convergence to be provably guaranteed.

To the best of our knowledge, themethod of LUCIE is a novel ap-
plication of bandit algorithm to individuals selection in evolution.
Further, one could analyse application of other best 𝜇 arm iden-
tifications techniques to this setting [5], such as parent selection
in addition to elitism. This could be an occasion to explore other
aspects such that parallel evaluations of individuals.

Experimentally, we confirmed those results on OneMax and
LeadingOnes under high posterior Gaussian and uniform noise.
The algorithm outperforms both (𝜇 + 𝜆) EA and resampling EA in
terms of learning speed, while maintaining a competitive perfor-
mance in low noise regime. This latter fact suggests that LUCIE is
versatile and could be used confidently without prior knowledge
on the noise level. The algorithm also features minimal variance,
yielding consistent results between runs. We also conducted neu-
roevolution experiments in the cartpole, acrobot, and inverted pen-
dulum domain under posterior uniform noise. Noise level here was
set to an extreme magnitude of up to 800% of the maximum reach-
able fitness. Here as well, LUCIE demonstrated faster convergence
to the optimal solution and a minimal variance in the results com-
pared to the EA baseline with and without resampling. We believe
that LUCIE could be used for larger neuroevolution experiments,
in genetic algorithms of larger sizes or evolutionary strategies. As
LUCIE proposes a way to guarantee elite selection under noisy fit-
ness evaluations, it has potential for use in various EAs in many
contexts such as policy search, robotics, and multi-objective opti-
mization.
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Table 3: Final validation fitness for CaRtPole neuroevolution under posterior uniform noise.
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Table 4: Final validation fitness for Acrobot neuroevolution under posterior uniform noise.
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Table 5: Final validation fitness for Pendulum neuroevolution under posterior uniform noise.
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